Adaptive selection at G6PD and disparities in diabetes complications

  • Teo, Z. L. et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 128, 1580–1591 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sachdeva, M. M. Retinal neurodegeneration in diabetes: an emerging concept in diabetic retinopathy. Curr. Diab. Rep. 21, 65 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yumnamcha, T., Guerra, M., Singh, L. P. & Ibrahim, A. S. Metabolic dysregulation and neurovascular dysfunction in diabetic retinopathy. Antioxidants (Basel) 9, 1244 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Miller, R. G. & Orchard, T. J. Understanding metabolic memory: a tale of two studies. Diabetes 69, 291–299 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wong, T. Y. et al. Diabetic retinopathy in a multi-ethnic cohort in the United States. Am. J. Ophthalmol. 141, 446–455 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varma, R., Torres, M., Peña, F., Klein, R. & Azen, S. P. Prevalence of diabetic retinopathy in adult Latinos: the Los Angeles Latino eye study. Ophthalmology 111, 1298–1306 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Prevalence of diabetic retinopathy in the United States, 2005–2008. JAMA 304, 649–656 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Lundeen, E. A. et al. Prevalence of diabetic retinopathy in the US in 2021. JAMA Ophthalmol. 141, 747–754 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burdon, K. P. et al. Genome-wide association study for sight-threatening diabetic retinopathy reveals association with genetic variation near the GRB2 gene. Diabetologia 58, 2288–2297 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Graham, P. S. et al. Genome-wide association studies for diabetic macular edema and proliferative diabetic retinopathy. BMC Med. Genet. 19, 71 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imamura, M. et al. Genome-wide association studies identify two novel loci conferring susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. Hum. Mol. Genet. 30, 716–726 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu, C. et al. Genome-wide association study for proliferative diabetic retinopathy in Africans. NPJ Genom. Med. 4, 20 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meng, W. et al. A genome-wide association study suggests new evidence for an association of the NADPH oxidase 4 (NOX4) gene with severe diabetic retinopathy in type 2 diabetes. Acta Ophthalmol. 96, e811–e819 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Peng, D. et al. Common variants in or near ZNRF1, COLEC12, SCYL1BP1 and API5 are associated with diabetic retinopathy in Chinese patients with type 2 diabetes. Diabetologia 58, 1231–1238 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Pollack, S. et al. Multiethnic genome-wide association study of diabetic retinopathy using liability threshold modeling of duration of diabetes and glycemic control. Diabetes 68, 441–456 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Shtir, C. et al. Exome-based case-control association study using extreme phenotype design reveals novel candidates with protective effect in diabetic retinopathy. Hum. Genet. 135, 193–200 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Looker, H. C. et al. Genome-wide linkage analyses to identify loci for diabetic retinopathy. Diabetes 56, 1160–1166 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Liang, X. Y. et al. Evidence of positively selected G6PD A- allele reduces risk of Plasmodium falciparum infection in African population on Bioko Island. Mol. Genet. Genom. Med. 8, e1061 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tishkoff, S. A. et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science 293, 455–462 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Leong, A. & Wheeler, E. Genetics of HbA1c: a case study in clinical translation. Curr. Opin. Genet. Dev. 50, 79–85 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chen, Z. et al. Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network. Hum. Mol. Genet. 22, 2529–2538 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • da Rocha, J. E. B. et al. G6PD distribution in sub-Saharan Africa and potential risks of using chloroquine/hydroxychloroquine based treatments for COVID-19. Pharmacogenomics J. 21, 649–656 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes highlights the power of diverse populations for discovery and translation. Nat. Genet. 54, 560–572 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Farris, J. C. et al. Grainyhead-like 2 reverses the metabolic changes induced by the oncogenic epithelial-mesenchymal transition: effects on anoikis. Mol. Cancer Res. 14, 528–538 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tomasoni, M. et al. Genome-wide association studies of retinal vessel tortuosity identify numerous novel loci revealing genes and pathways associated with ocular and cardiometabolic diseases. Ophthalmol. Sci. 3, 100288 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Veluchamy, A. et al. Novel genetic locus influencing retinal venular tortuosity is also associated with risk of coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 39, 2542–2552 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bansal, A. et al. Integrative omics analyses reveal epigenetic memory in diabetic renal cells regulating genes associated with kidney dysfunction. Diabetes 69, 2490–2502 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Jin, T. & Liu, L. The Wnt signaling pathway effector TCF7L2 and type 2 diabetes mellitus. Mol. Endocrinol. 22, 2383–2392 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gloyn, A. L., Braun, M. & Rorsman, P. Type 2 diabetes susceptibility gene TCF7L2 and its role in beta-cell function. Diabetes 58, 800–802 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Del Bosque-Plata, L., Martínez-Martínez, E., Espinoza-Camacho, M. & Gragnoli, C. The role of TCF7L2 in type 2 diabetes. Diabetes 70, 1220–1228 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alavi, M. V. et al. Col4a1 mutations cause progressive retinal neovascular defects and retinopathy. Sci. Rep. 6, 18602 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Han, H. C. Twisted blood vessels: symptoms, etiology and biomechanical mechanisms. J. Vasc. Res. 49, 185–197 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sears, J., Gilman, J. & Sternberg, P. Jr. Inherited retinal arteriolar tortuosity with retinal hemorrhages. Arch. Ophthalmol. 116, 1185–1188 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han, H. C., Chesnutt, J. K., Garcia, J. R., Liu, Q. & Wen, Q. Artery buckling: new phenotypes, models, and applications. Ann. Biomed. Eng. 41, 1399–1410 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Leong, A. et al. Association of G6PD variants with hemoglobin A1c and impact on diabetes diagnosis in East Asian individuals. BMJ Open Diabetes Res. Care 8, e001091 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mbanefo, E. C. et al. Association of glucose-6-phosphate dehydrogenase deficiency and malaria: a systematic review and meta-analysis. Sci. Rep. 7, 45963 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cheng, Y. J. et al. Prevalence of diabetes by race and ethnicity in the United States, 2011–2016. JAMA 322, 2389–2398 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKean-Cowdin, R. et al. Prevalence and risk factors for DR in the African American Eye Disease Study. Invest. Ophthalmol. Vis. Sci. 60, 1089–1089 (2019).


    Google Scholar
     

  • Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin A1C levels via glycemic and nonglycemic pathways. Diabetes 59, 3229–3239 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wheeler, E. et al. Impact of common genetic determinants of hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: a transethnic genome-wide meta-analysis. PLoS Med. 14, e1002383 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson, E. K., Kwiatkowski, D. P. & Sabeti, P. C. Natural selection and infectious disease in human populations. Nat. Rev. Genet. 15, 379–393 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Pauling, L. et al. Sickle cell anemia a molecular disease. Science 110, 543–548 (1949).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bigham, A. W. & Lee, F. S. Human high-altitude adaptation: forward genetics meets the HIF pathway. Genes Dev. 28, 2189–2204 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roden, D. M. et al. Development of a large-scale de-identified DNA biobank to enable personalized medicine. Clin. Pharmacol. Ther. 84, 362–369 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Hunter-Zinck, H. et al. Genotyping array design and data quality control in the Million Veteran Program. Am. J. Hum. Genet. 106, 535–548 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Allen, N. E., Sudlow, C., Peakman, T. & Collins, R. UK Biobank data: come and get it. Sci. Transl. Med. 6, 224ed224 (2014).

    Article 

    Google Scholar
     

  • Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlson, E. W., Boutin, N. T., Hoffnagle, A. G. & Allen, N. L. Building the Partners HealthCare Biobank at Partners Personalized Medicine: informed consent, return of research results, recruitment lessons and operational considerations. J. Pers. Med. 6, 2 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Dumitrescu, L. et al. Assessing the accuracy of observer-reported ancestry in a biorepository linked to electronic medical records. Genet. Med. 12, 648–650 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boutin, N. T. et al. The evolution of a large biobank at Mass General Brigham. J. Pers. Med. 12, 1323 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fang, H. et al. Harmonizing genetic ancestry and self-identified race/ethnicity in genome-wide association studies. Am. J. Hum. Genet. 105, 763–772 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Breeyear, J. H. et al. Development of portable electronic health record based algorithms to identify individuals with diabetic retinopathy. Preprint at medRxiv https://www.medrxiv.org/content/10.1101/2023.11.10.23298311v2 (2023).

  • Eastwood, S. V. et al. Algorithms for the capture and adjudication of prevalent and incident diabetes in UK Biobank. PLoS ONE 11, e0162388 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

  • Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R package for causal mediation analysis. J. Stat. Softw. 59, 1–38 (2014).

    Article 

    Google Scholar
     

  • Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations. Bioinformatics 26, 1205–1210 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Carroll, R. J., Bastarache, L. & Denny, J. C. R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment. Bioinformatics 30, 2375–2376 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gerstein, H. C. et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 358, 2545–2559 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Therneau, T. M. A package for survival analysis in R. ‘Survival’ V3.5-8 https://cran.r-project.org/src/contrib/Archive/survival/survival_3.5-8.tar.gz (2020).

  • Related posts

    Putting the brakes on diabetes complications | Diabetes

    Diabetic pathophysiology and vascular complications in chronic kidney disease: a comprehensive review

    Evaluation of the Steno Type 1 Risk Engine in predicting cardiovascular events in an ethnic mixed population of type 1 diabetes mellitus and its association with chronic microangiopathy complications | Cardiovascular Diabetology