Characterization of the gut bacterial and viral microbiota in latent autoimmune diabetes in adults

  • Tuomi, T. et al. The many faces of diabetes: A disease with increasing heterogeneity. Lancet 383, 1084–1094. https://doi.org/10.1016/S0140-6736(13)62219-9 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Tuomi, T. et al. Clinical and genetic characteristics of type 2 diabetes with and without GAD antibodies. Diabetes 48, 150–157 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zinman, B. et al. Phenotypic characteristics of GAD antibody-positive recently diagnosed patients with type 2 diabetes in North America and Europe. Diabetes 53, 3193–3200 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hawa, M. I. et al. Metabolic syndrome and autoimmune diabetes: Action LADA 3. Diabetes Care 32, 160–164 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen, M. K. et al. Latent autoimmune diabetes in adults differs genetically from classical type 1 diabetes diagnosed after the age of 35 years. Diabetes Care 33, 2062–2064 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Z. et al. Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China Study): A nationwide, multicenter, clinic-based cross-sectional study. Diabetes 62, 543–550 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, R. et al. Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes. BMC Med 15, 1 (2017).

    Article 

    Google Scholar
     

  • Cousminer, D. L. et al. First genome-wide association study of latent autoimmune diabetes in adults reveals novel insights linking immune and metabolic diabetes. in Diabetes Care vol. 41 2396–2403 (American Diabetes Association Inc., 2018).

  • Andersen, M. K. et al. Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes. Diabetologia 57, 1859–1868 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramu, D., Perumal, V. & Paul, S. F. D. Association of common type 1 and type 2 diabetes gene variants with latent autoimmune diabetes in adults: A meta-analysis. J. Diabetes 11, 484–496 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, M. K. New insights into the genetics of latent autoimmune diabetes in adults. Curr. Diabetes Rep. https://doi.org/10.1007/s11892-020-01330-y (2020).

    Article 

    Google Scholar
     

  • Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vujkovic-Cvijin, I. et al. Host variables confound gut microbiota studies of human disease. Nature. 587, 448–454 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science. 307, 1915–1920. https://doi.org/10.1126/science.1104816 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 1979(312), 1355–1359 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0433-9 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tai, N., Wong, F. S. & Wen, L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev. Endocr. Metab. Disord. 16, 55–65. https://doi.org/10.1007/s11154-015-9309-0 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durazzo, M., Ferro, A. & Gruden, G. Gastrointestinal microbiota and type 1 diabetes mellitus: The state of art. J. Clin Med. 8, 1843 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurung, M. et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. https://doi.org/10.1016/j.ebiom.2019.11.051 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watts, T. et al. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc. Natl. Acad. Sci. USA 102, 2916–2921 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosi, E. et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49, 2824–2827 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Musso, G., Gambino, R. & Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu. Rev. Med. 62, 361–380 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, Y. et al. Characteristics of the gut microbiota and metabolism in patients with latent autoimmune diabetes in adults: A case-control study. Diabetes Care 44, 2738–2746 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. et al. Distinct signatures of gut microbiota and metabolites in different types of diabetes: A population-based cross-sectional study. EClinicalMedicine. 62, 102132 (2023).

  • Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527-541.e5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, G. et al. Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc. Natl. Acad. Sci. USA 114, E6166–E6175 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Y., You, X., Mai, G., Tokuyasu, T. & Liu, C. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome 6, 1–12 (2018).

    Article 

    Google Scholar
     

  • Li, J. et al. Actinomyces and alimentary tract diseases: A review of its biological functions and pathology. BioMed. Res. Int. https://doi.org/10.1155/2018/3820215 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Alterations of gut microbiota and blood lipidome in gestational diabetes mellitus with hyperlipidemia. Front. Physiol. 10, 1015 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Chierico, F. et al. Gut Microbiota markers in obese adolescent and adult patients: Age-dependent differential patterns. Front. Microbiol. 9, 1210 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8, e71108 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leiva-Gea, I. et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: A case-control study. Diabetes Care 41, 2385–2395 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allin, K. H. et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61, 810–820 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Babukumar, S., Vinothkumar, V., Sankaranarayanan, C. & Srinivasan, S. Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Pharm. Biol. 55, 1442–1449 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhee, E. J. & Plutzky, J. Retinoid metabolism and diabetes mellitus. Diabetes Metab. J. 36, 167–180. https://doi.org/10.4093/dmj.2012.36.3.167 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roohbakhsh, A., Karimi, G. & Iranshahi, M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed. Pharmacother. 91, 31–42. https://doi.org/10.1016/j.biopha.2017.04.057 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thingholm, L. B. et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252-264.e10 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siljander, H., Honkanen, J. & Knip, M. Microbiome and type 1 diabetes. EBioMedicine. 46, 512–521. https://doi.org/10.1016/j.ebiom.2019.06.031 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong, X. et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional chinese herbal formula: A multicenter, randomized, open label clinical trial. mBio 9, 2392–2409 (2018).

    Article 

    Google Scholar
     

  • Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitzgerald, C. B. et al. Probing the “dark matter” of the human gut phageome: culture assisted metagenomics enables rapid discovery and host-linking for novel bacteriophages. Front. Cell Infect. Microbiol. 11, 100 (2021).

    Article 

    Google Scholar
     

  • Garmaeva, S. et al. Stability of the human gut virome and effect of gluten-free diet. Cell Rep. 35, 109132 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomofuji, Y. et al. Whole gut virome analysis of 476 Japanese revealed a link between phage and autoimmune disease. Ann. Rheum. Dis. 81, 278–288 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, K. et al. Alterations in the gut virome in obesity and type 2 diabetes mellitus. Gastroenterology 161, 1257-1269.e13 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q. et al. Enteric phageome alterations in patients with type 2 diabetes. Front. Cell Infect. Microbiol. 10, 856 (2021).

    Article 

    Google Scholar
     

  • Alvarez-Silva, C. et al. Trans-ethnic gut microbiota signatures of type 2 diabetes in Denmark and India. Genome Med. 13, 1–13 (2021).

    Article 

    Google Scholar
     

  • Dantoft, T. M. et al. Cohort description: The Danish study of Functional Disorders. Clin. Epidemiol. 9, 127–139 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  • Iwai, S. et al. Piphillin: Improved prediction of metagenomic content by direct inference from human microbiomes. PLoS One 11, e0166104 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narayan, N. R. et al. Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences. BMC Genom. 21, 56 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conceição-Neto, N. et al. Modular approach to customise sample preparation procedures for viral metagenomics: A reproducible protocol for virome analysis. Sci. Rep. 5, 16532 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Espen, L. et al. A previously undescribed highly prevalent phage identified in a danish enteric virome catalog. mSystems 6, e0038221 (2021).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, 1–10 (2009).

    Article 

    Google Scholar
     

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beller, L. et al. The virota and its transkingdom interactions in the healthy infant gut. Proc. Natl. Acad. Sci. USA 119, e2114619119 (2022).

  • Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: Mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).

  • Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Related posts

    UVA conducts diabetes research focusing on body movement

    Detecting type 2 diabetes using audio: How does it work?

    Type 2 diabetes mellitus in adults: pathogenesis, prevention and therapy