Childhood-onset type 1 diabetes and subsequent adult psychiatric disorders: a nationwide cohort and genome-wide Mendelian randomization study

  • Katsarou, A. et al. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers 3, 17016 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gregory, G. A. et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol. 10, 741–760 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Heald, A. H. et al. Estimating life years lost to diabetes: outcomes from analysis of National Diabetes Audit and Office of National Statistics data. Cardiovasc. Endocrinol. Metab. 9, 183–185 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sussman, M., Benner, J., Haller, M. J., Rewers, M. & Griffiths, R. Estimated lifetime economic burden of type 1 diabetes. Diabetes Technol. Ther. 22, 121–130 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Butwicka, A., Frisen, L., Almqvist, C., Zethelius, B. & Lichtenstein, P. Risks of psychiatric disorders and suicide attempts in children and adolescents with type 1 diabetes: a population-based cohort study. Diabetes Care 38, 453–459 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dybdal, D. et al. Increasing risk of psychiatric morbidity after childhood onset type 1 diabetes: a population-based cohort study. Diabetologia 61, 831–838 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, S. et al. Association and familial coaggregation of childhood-onset type 1 diabetes with depression, anxiety, and stress-related disorders: a population-based cohort study. Diabetes Care 45, 1987–1993 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delamater, A. M. et al. ISPAD Clinical Practice Consensus Guidelines 2018: psychological care of children and adolescents with type 1 diabetes. Pediatr. Diabetes 19 (Suppl. 27), 237–249 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Reynolds, K. A. & Helgeson, V. S. Children with diabetes compared to peers: depressed? Distressed? A meta-analytic review. Ann. Behav. Med. 42, 29–41 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zheng, X. P. & Chen, S. H. Psycho-behavioral changes in children with type 1 diabetes mellitus. World J. Pediatr. 9, 261–265 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Hagger, V., Hendrieckx, C., Sturt, J., Skinner, T. C. & Speight, J. Diabetes distress among adolescents with type 1 diabetes: a systematic review. Curr. Diabetes Rep. 16, 9 (2016).

    Article 

    Google Scholar
     

  • Whittemore, R., Jaser, S., Chao, A., Jang, M. & Grey, M. Psychological experience of parents of children with type 1 diabetes: a systematic mixed-studies review. Diabetes Educ. 38, 562–579 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mergenthaler, P., Lindauer, U., Dienel, G. A. & Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 36, 587–597 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mauras, N. et al. Impact of type 1 diabetes in the developing brain in children: a longitudinal study. Diabetes Care 44, 983–992 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solmi, M. et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry 27, 281–295 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Chubak, J. et al. Informative presence in electronic health record data: a challenge in implementing study exclusion criteria. Epidemiology 34, 29–32 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • VanderWeele, T. J. & Ding, P. Sensitivity analysis in observational research: introducing the E-value. Ann. Intern. Med. 167, 268–274 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Schneeweiss, S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol. Drug Saf. 15, 291–303 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Thomas, N. J. et al. Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol. 6, 122–129 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Insel, R. A. et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38, 1964–1974 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atkinson, M. A. & Eisenbarth, G. S. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 358, 221–229 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. Lancet 383, 69–82 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Frank, M. R. Psychological issues in the care of children and adolescents with type 1 diabetes. Paediatr. Child Health 10, 18–20 (2005).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Law, G. U., Walsh, J., Queralt, V. & Nouwen, A. Adolescent and parent diabetes distress in type 1 diabetes: the role of self-efficacy, perceived consequences, family responsibility and adolescent-parent discrepancies. J. Psychosom. Res. 74, 334–339 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Kiriella, D. A. et al. Unraveling the concepts of distress, burnout, and depression in type 1 diabetes: a scoping review. eClinicalMedicine 40, 101118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fioretti, C. & Mugnaini, C. Living with type 1 diabetes mellitus in emerging adulthood: a qualitative study. Br. J. Health Psychol. 27, 1226–1240 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Arnett, J. J., Zukauskiene, R. & Sugimura, K. The new life stage of emerging adulthood at ages 18–29 years: implications for mental health. Lancet Psychiatry 1, 569–576 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Quality Standard [QS125]: Diabetes in Children and Young People. Quality Statement 6: Access to Mental Health Professionals with an Understanding of Type 1 or Type 2 Diabetes (National Institute for Health and Care Excellence, 2022).

  • Juvonen, H. et al. Incidence of schizophrenia in a nationwide cohort of patients with type 1 diabetes mellitus. Arch. Gen. Psychiatry 64, 894–899 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Figlewicz, D. P., Evans, S. B., Murphy, J., Hoen, M. & Baskin, D. G. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 964, 107–115 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Unger, J. W., Livingston, J. N. & Moss, A. M. Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog. Neurobiol. 36, 343–362 (1991).

    Article 
    PubMed 

    Google Scholar
     

  • Aylward, A., Chiou, J., Okino, M. L., Kadakia, N. & Gaulton, K. J. Shared genetic risk contributes to type 1 and type 2 diabetes etiology. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddy314 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Perry, B. I. et al. Longitudinal trends in childhood insulin levels and body mass index and associations with risks of psychosis and depression in young adults. JAMA Psychiatry 78, 416–425 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Perry, B. I. et al. The potential shared role of inflammation in insulin resistance and schizophrenia: a bidirectional two-sample Mendelian randomization study. PLoS Med. 18, e1003455 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryndová, L. et al. Czechia: health system review 2023. Health Systems in Transition Vol. 25, No. 1 (European Observatory on Health Systems and Policies, 2023).

  • Dalsgaard, S. et al. Incidence rates and cumulative incidences of the full spectrum of diagnosed mental disorders in childhood and adolescence. JAMA Psychiatry 77, 155–164 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Šumník, Z., Prázný, M., Pelikánová, T. & Škrha, J. Standard of care for type 1 diabetes (Czech Diabetes Society). Diabetologie, Metabolismus, Endokrinologie, Výživa 25, 47–56 (2022).


    Google Scholar
     

  • R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

  • Mathur, M. B., Ding, P., Riddell, C. A. & VanderWeele, T. J. Web site and R package for computing E-values. Epidemiology 29, e45–e47 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wasserstein, R. L. & Lazar, N. A. The ASA statement on p-values: context, process, and purpose. Am. Stat. 70, 129–133 (2016).

    Article 

    Google Scholar
     

  • Inshaw, J. R. J., Cutler, A. J., Crouch, D. J. M., Wicker, L. S. & Todd, J. A. Genetic variants predisposing most strongly to type 1 diabetes diagnosed under age 7 years lie near candidate genes that function in the immune system and in pancreatic beta-cells. Diabetes Care 43, 169–177 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pierce, B. L., Ahsan, H. & Vanderweele, T. J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 40, 740–752 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Bender, R. & Lange, S. Adjusting for multiple testing—when and how? J. Clin. Epidemiol. 54, 343–349 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).


    Google Scholar
     

  • Burgess, S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int. J. Epidemiol. 43, 922–929 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 50, 693–698 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bowden, J. et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int. J. Epidemiol. 45, 1961–1974 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related posts

    Controlling emotions is key to reducing diabetes pain, experts say

    The Psychological Implications of Automated Insulin Delivery Systems in Type 1 Diabetes Care

    “The mental impact of not being able to drive took a toll on me. I felt like I had lost my freedom and independence.”