Double diabetes—when type 1 diabetes meets type 2 diabetes: definition, pathogenesis and recognition | Cardiovascular Diabetology

  • WHO. Classification of diabetes mellitus 2019. Geneva: WHO; 2019.


    Google Scholar
     

  • Leslie RD, Palmer J, Schloot NC, Lernmark A. Diabetes at the crossroads: relevance of disease classification to pathophysiology and treatment. Diabetologia. 2016;59(1):13–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Teupe B, Bergis K. Epidemiological evidence for ‘double diabetes.’ Lancet. 1991;337(8737):361–2.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Libman IM, Becker DJ. Coexistence of type 1 and type 2 diabetes mellitus: ‘double’ diabetes? Pediatr Diabetes. 2003;4(2):110–3.

    Article 
    PubMed 

    Google Scholar
     

  • Merger SR, Kerner W, Stadler M, Zeyfang A, Jehle P, Müller-Korbsch M, et al. Prevalence and comorbidities of double diabetes. Diabetes Res Clin Pract. 2016;1(119):48–56.

    Article 

    Google Scholar
     

  • Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Afshin A, Forouzanfar M, Reitsma M, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377(1):13–27.

    Article 
    PubMed 

    Google Scholar
     

  • Szadkowska A, Madej A, Ziółkowska K, Szymańska M, Jeziorny K, Mianowska B, et al. Gender and age—dependent effect of type 1 diabetes on obesity and altered body composition in young adults. Ann Agric Environ Med. 2015;22(1):124–8.

    Article 
    PubMed 

    Google Scholar
     

  • Gale EAM. The rise of childhood type 1 diabetes in the 20th century. Diabetes. 2002;51(12):3353–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fagot-Campagna A, Pettitt DJ, Engelgau MM, Ríos Burrows N, Geiss LS, Valdez R, et al. Type 2 diabetes among North American children and adolescents: an epidemiologic review and a public health perspective. J Pediatr. 2000;136(5):664–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinhas-Hamiel O, Dolan LM, Daniels SR, Standiford D, Khoury PR, Zeitler P. Increased incidence of non-insulin-dependent diabetes mellitus among adolescents. J Pediatr. 1996;128(5 Pt 1):608–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh R, Shaw J, Zimmet P. Epidemiology of childhood type 2 diabetes in the developing world. Pediatr Diabetes. 2004;5(3):154–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gilliam LK, Brooks-Worrell BM, Palmer JP, Greenbaum CJ, Pihoker C. Autoimmunity and clinical course in children with type 1, type 2, and type 1.5 diabetes. J Autoimmun. 2005;25(3):244–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pozzilli P, Buzzetti R. A new expression of diabetes: double diabetes. Trends Endocrinol Metab. 2007;18(2):52–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cleland SJ. Cardiovascular risk in double diabetes mellitus–when two worlds collide. Nat Rev Endocrinol. 2012;8(8):476–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kietsiriroje N, Pearson S, Campbell M, Ariëns RAS, Ajjan RA. Double diabetes: a distinct high-risk group? Diabetes Obes Metab. 2019;21(12):2609–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pozzilli P, Guglielmi C, Caprio S, Buzzetti R. Obesity, autoimmunity, and double diabetes in youth. Diabetes Care. 2011;34(Suppl 2):S166–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alberti K, Zimmet P. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation—PubMed. Diabet Med. 1998;15(7):539–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • World Health Organisation. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus. Geneva: World Health Organisation; 1999.


    Google Scholar
     

  • Cleeman JI. Executive summary of the Third report of the National Cholesterol Education Program (NCEP) expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97.

    Article 

    Google Scholar
     

  • Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005;112(17):2735–52.

    Article 
    PubMed 

    Google Scholar
     

  • Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome–a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lecumberri E, Nattero-Chávez L, Quiñones Silva J, Alonso Díaz S, Fernández-Durán E, Dorado Avendaño B, et al. Impact of excluding hyperglycemia from international diabetes federation metabolic syndrome diagnostic criteria on prevalence of the syndrome and its association with microvascular complications, in adult patients with type 1 diabetes. Endocrine. 2022;76(3):601–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Melo DA, Dos Santos AM, da Silveira VNC, Silva MB, da Diniz AS. Prevalence of metabolic syndrome in adolescents based on three diagnostic definitions: a cross-sectional study. Arch Endocrinol Metab. 2023;67(5):e000634.

    Article 
    PubMed Central 

    Google Scholar
     

  • Haverinen E, Paalanen L, Palmieri L, Padron-Monedero A, Noguer-Zambrano I, Sarmiento Suárez R, et al. Comparison of metabolic syndrome prevalence using four different definitions—a population-based study in Finland. Arch Public Health. 2021;79(1):231.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang Y, Chen Z, Wang X, Zheng C, Shao L, Tian Y, et al. Comparison of the three most commonly used metabolic syndrome definitions in the Chinese population: a prospective study. Metabolites. 2022;13(1):12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nwankwo M, Okamkpa CJ, Danborno B. Comparison of diagnostic criteria and prevalence of metabolic syndrome using WHO, NCEP-ATP III, IDF and harmonized criteria: a case study from urban southeast Nigeria. Diabetes Metab Syndr. 2022;16(12): 102665.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pokharel DR, Khadka D, Sigdel M, Yadav NK, Acharya S, Kafle RC, et al. Prevalence of metabolic syndrome in Nepalese type 2 diabetic patients according to WHO, NCEP ATP III, IDF and Harmonized criteria. J Diabetes Metab Disord. 2014;13(1):104.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arslanian SA, Bacha F, Saad R, Gungor N. Family history of type 2 diabetes is associated with decreased insulin sensitivity and an impaired balance between insulin sensitivity and insulin secretion in white youth. Diabetes Care. 2005;28(1):115–9.

    Article 
    PubMed 

    Google Scholar
     

  • Wilkin TJ. The accelerator hypothesis: a review of the evidence for insulin resistance as the basis for type I as well as type II diabetes. Int J Obes. 2009;33(7):716–26.

    Article 
    CAS 

    Google Scholar
     

  • Wilkin TJ. The accelerator hypothesis: weight gain as the missing link between type I and type II diabetes. Diabetologia. 2001;44(7):914–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dahlquist G. Can we slow the rising incidence of childhood-onset autoimmune diabetes? The overload hypothesis. Diabetologia. 2006;49(1):20–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fourlanos S, Narendran P, Byrnes GB, Colman PG, Harrison LC. Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia. 2004;47(10):1661–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Betts P, Mulligan J, Ward P, Smith B, Wilkin T. Increasing body weight predicts the earlier onset of insulin-dependant diabetes in childhood: testing the ‘accelerator hypothesis’ (2). Diabet Med. 2005;22(2):144–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu P, Cuthbertson D, Greenbaum C, Palmer JP, Krischer JP. Role of insulin resistance in predicting progression to type 1 diabetes. Diabetes Care. 2007;30(9):2314–20.

    Article 
    PubMed 

    Google Scholar
     

  • Nathan D, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Purnell JQ, Hokanson JE, Marcovina SM, Steffes MW, Cleary PA, Brunzell JD. Effect of excessive weight gain with intensive therapy of type 1 diabetes on lipid levels and blood pressure: results from the DCCT. Diabetes Control and Complications Trial JAMA. 1998;280(2):140–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Nathan D, Cleary P, Backlund J, Genuth S, Lachin J, Orchard T, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    Article 
    PubMed 

    Google Scholar
     

  • Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martyn-Nemeth P, Quinn L, Penckofer S, Park C, Hofer V, Burke L. Fear of hypoglycemia: influence on glycemic variability and self-management behavior in young adults with type 1 diabetes. J Diabetes Complications. 2017;31(4):735–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Przezak A, Bielka W, Molęda P. Fear of hypoglycemia—an underestimated problem. Brain Behav. 2022;12(7): e2633.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donga E, van Dijk M, Hoogma RPLM, Corssmit EPM, Romijn JA. Insulin resistance in multiple tissues in patients with type 1 diabetes mellitus on long-term continuous subcutaneous insulin infusion therapy. Diabetes Metab Res Rev. 2013;29(1):33–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cleland SJ, Fisher BM, Colhoun HM, Sattar N, Petrie JR. Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks? Diabetologia. 2013;56(7):1462–70.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Catalano KJ, Maddux BA, Szary J, Youngren JF, Goldfine ID, Schaufele F. Insulin resistance induced by hyperinsulinemia coincides with a persistent alteration at the insulin receptor tyrosine kinase domain. PLoS ONE. 2014;9(9): e108693.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu HY, Cao SY, Hong T, Han J, Liu Z, Cao W. Insulin is a stronger inducer of insulin resistance than hyperglycemia in mice with type 1 diabetes mellitus (T1DM). J Biol Chem. 2009;284(40):27090–100.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yki-jarvinen H. Glucose toxicity. Endocr Rev. 1992;13(3):415–31.

    CAS 
    PubMed 

    Google Scholar
     

  • Fasching P, Ratheiser K, Damjancic P, Schneider B, Nowotny P, Vierhapper H, et al. Both acute and chronic near-normoglycaemia are required to improve insulin resistance in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1993;36(4):346–51.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yki-Järvinen H, Koivisto VA. Continuous subcutaneous insulin infusion therapy decreases insulin resistance in type 1 diabetes. J Clin Endocrinol Metab. 1984;58(4):659–66.

    Article 
    PubMed 

    Google Scholar
     

  • Dandona P, Fonseca V, Fernando O, Menon RK, Weerakoon J, Kurtz A, et al. Control of diabetes through a subcutaneous peritoneal access device (SPAD) in patients with resistance to subcutaneously injected insulin—PubMed. Diabetes Res. 1987;5(1):47–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Giacca A, Caumo A, Galimberti G, Petrella G, Librenti MC, Scavini M, et al. Peritoneal and subcutaneous absorption of insulin in type I diabetic subjects. J Clin Endocrinol Metab. 1993;77(3):738–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Beylot M, Khalfallah Y, Laville M, Sautot G, Dechaud H, Serusclat P, et al. Insulin-mediated glucose disposal in type 1 (insulin-dependent) diabetic subjects treated by continuous subcutaneous or intraperitoneal insulin fusion—PubMed. Diabete Metab. 1987;13(4):450–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Yki-Järvinen H, Koivisto VA. Natural course of insulin resistance in type I diabetes. N Engl J Med. 1986;315(4):224–30.

    Article 
    PubMed 

    Google Scholar
     

  • Kacerovsky M, Brehm A, Chmelik M, Schmid AI, Szendroedi J, Kacerovsky-Bielesz G, et al. Impaired insulin stimulation of muscular ATP production in patients with type 1 diabetes. J Intern Med. 2011;269(2):189–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Simonson DC, Tamborlane WV, Sherwin RS, Smith JD, DeFronzo RA. Improved insulin sensitivity in patients with type I diabetes mellitus after CSII. Diabetes. 1985;34(Suppl 3):80–6.

    Article 
    PubMed 

    Google Scholar
     

  • Donga E, Dekkers OM, Corssmit EPM, Romijn JA. Insulin resistance in patients with type 1 diabetes assessed by glucose clamp studies: systematic review and meta-analysis. Eur J Endocrinol. 2015;173(1):101–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979;237(3):E214–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study. Diabetes Care. 1997;20(7):1087–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson RL, Hamman RF, Savage PJ, Saad MF, Laws A, Kades WW, et al. Exploration of simple insulin sensitivity measures derived from frequently sampled intravenous glucose tolerance (FSIGT) tests. The Insulin Resistance Atherosclerosis Study. Am J Epidemiol. 1995;142(7):724–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Williams KV, Erbey JR, Becker D, Arslanian S, Orchard TJ. Can clinical factors estimate insulin resistance in type 1 diabetes? Diabetes. 2000;49(4):626–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thorn LM, Forsblom C, Fagerudd J, Thomas MC, Pettersson-Fernholm K, Saraheimo M, et al. Metabolic syndrome in type 1 diabetes: association with diabetic nephropathy and glycemic control (the FinnDiane study). Diabetes Care. 2005;28(8):2019–24.

    Article 
    PubMed 

    Google Scholar
     

  • Kahn HS. The ‘lipid accumulation product’ performs better than the body mass index for recognizing cardiovascular risk: a population-based comparison. BMC Cardiovasc Disord. 2005;8(5):26.

    Article 

    Google Scholar
     

  • Kahn HS. The lipid accumulation product is better than BMI for identifying diabetes: a population-based comparison. Diabetes Care. 2006;29(1):151–3.

    Article 
    PubMed 

    Google Scholar
     

  • Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299–304.

    Article 
    PubMed 

    Google Scholar
     

  • Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4):920–2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Er LK, Wu S, Chou HH, Hsu LA, Teng MS, Sun YC, et al. Triglyceride glucose-body mass index is a simple and clinically useful surrogate marker for insulin resistance in nondiabetic individuals. PLoS ONE. 2016;11(3): e0149731.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duca LM, Maahs DM, Schauer IE, Bergman BC, Nadeau KJ, Bjornstad P, et al. Development and validation of a method to estimate insulin sensitivity in patients with and without type 1 diabetes. J Clin Endocrinol Metab. 2016;101(2):686–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng X, Huang B, Luo S, Yang D, Bao W, Li J, et al. A new model to estimate insulin resistance via clinical parameters in adults with type 1 diabetes. Diabetes Metab Res Rev. 2017. https://doi.org/10.1002/dmrr.2880.

    Article 
    PubMed 

    Google Scholar
     

  • Bello-Chavolla OY, Almeda-Valdes P, Gomez-Velasco D, Viveros-Ruiz T, Cruz-Bautista I, Romo-Romo A, et al. METS-IR, a novel score to evaluate insulin sensitivity, is predictive of visceral adiposity and incident type 2 diabetes. Eur J Endocrinol. 2018;178(5):533–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lim J, Kim J, Koo SH, Kwon GC. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: an analysis of the 2007–2010 Korean National Health and Nutrition Examination Survey. PLoS ONE. 2019;14(3): e0212963.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raimi TH, Dele-Ojo BF, Dada SA, Fadare JO, Ajayi DD, Ajayi EA, et al. Triglyceride-Glucose index and related parameters predicted metabolic syndrome in Nigerians. Metab Syndr Relat Disord. 2021;19(2):76–82.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallace TM, Matthews DR. The assessment of insulin resistance in man. Diabet Med. 2002;19(7):527–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ovalle F. Clinical approach to the patient with diabetes mellitus and very high insulin requirements. Diabetes Res Clin Pract. 2010;90(3):231–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira-Hermosillo A, Ramírez-Rentería C, Mendoza-Zubieta V, Molina-Ayala MA. Utility of the waist-to-height ratio, waist circumference and body mass index in the screening of metabolic syndrome in adult patients with type 1 diabetes mellitus. Diabetol Metab Syndr. 2014;6(1):32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uruska A, Zozulinska-Ziolkiewicz D, Niedzwiecki P, Pietrzak M, Wierusz-Wysocka B. TG/HDL-C ratio and visceral adiposity index may be useful in assessment of insulin resistance in adults with type 1 diabetes in clinical practice. J Clin Lipidol. 2018;12(3):734–40.

    Article 
    PubMed 

    Google Scholar
     

  • Chillarón JJ, Goday A, Flores-Le-Roux JA, Benaiges D, Carrera MJ, Puig J, et al. Estimated glucose disposal rate in assessment of the metabolic syndrome and microvascular complications in patients with type 1 diabetes. J Clin Endocrinol Metab. 2009;94(9):3530–4.

    Article 
    PubMed 

    Google Scholar
     

  • Ferreira-Hermosillo A, Ibarra-Salce R, Rodríguez-Malacara J, Molina-Ayala MA. Comparison of indirect markers of insulin resistance in adult patients with double diabetes. BMC Endocr Disord. 2020;20(1):87. https://doi.org/10.1186/s12902-020-00570-z.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Šimonienė D, Platūkiene A, Prakapienė E, Radzevičienė L, Veličkiene D. Insulin resistance in type 1 diabetes mellitus and its association with patient’s micro- and macrovascular complications, sex hormones, and other clinical data. Diabetes Ther. 2020;11(1):161–74.

    Article 
    PubMed 

    Google Scholar
     

  • Vladu M, Clenciu D, Efrem IC, Forţofoiu MC, Amzolini A, Micu ST, et al. Insulin resistance and chronic kidney disease in patients with type 1 diabetes mellitus. J Nutr Metab. 2017;2017:6425359.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nyström T, Holzmann MJ, Eliasson B, Svensson AM, Sartipy U. Estimated glucose disposal rate predicts mortality in adults with type 1 diabetes. Diabetes Obes Metab. 2018;20(3):556–63.

    Article 
    PubMed 

    Google Scholar
     

  • Kilpatrick ES, Rigby AS, Atkin SL. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: ‘double diabetes’ in the diabetes control and complications trial. Diabetes Care. 2007;30(3):707–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cano A, Llauradó G, Albert L, Mazarico I, Astiarraga B, González-Sastre M, et al. Utility of insulin resistance in estimating cardiovascular risk in subjects with type 1 diabetes according to the scores of the steno type 1 risk engine. J Clin Med. 2020;9(7):1–12.

    Article 

    Google Scholar
     

  • Epstein EJ, Osman JL, Cohen HW, Rajpathak SN, Lewis O, Crandall JP. Use of the estimated glucose disposal rate as a measure of insulin resistance in an urban multiethnic population with type 1 diabetes. Diabetes Care. 2013;36(8):2280–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marques CL, Beretta MV, Prates RE, de Almeida JC, Rodrigues T da C. Body adiposity markers and insulin resistance in patients with type 1 diabetes. Arch Endocrinol Metab. 2023. 67(3):401–7.

  • Karatas S, Beysel S. Visceral adiposity index, triglyceride/high-density lipoprotein ratio, and lipid accumulation product index to discriminate metabolic syndrome among adult type 1 diabetes patients. Metab Syndr Relat Disord. 2021;19(9):507–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taverna MJ, Martínez-Larrad MT, Frechtel GD, Serrano-Ríos M. Lipid accumulation product: a powerful marker of metabolic syndrome in healthy population. Eur J Endocrinol. 2011;164(4):559–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahn N, Baumeister SE, Amann U, Rathmann W, Peters A, Huth C, et al. Visceral adiposity index (VAI), lipid accumulation product (LAP), and product of triglycerides and glucose (TyG) to discriminate prediabetes and diabetes. Sci Rep. 2019;9(1):9693.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakabayashi I, Daimon T. A strong association between lipid accumulation product and diabetes mellitus in japanese women and men. J Atheroscler Thromb. 2014;21(3):282–8.

    Article 
    PubMed 

    Google Scholar
     

  • Lee JW, Lim NK, Park HY. The product of fasting plasma glucose and triglycerides improves risk prediction of type 2 diabetes in middle-aged Koreans. BMC Endocr Disord. 2018;18(1):33.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-Abundis E, Ramos-Zavala MG, Hernández-González SO, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2011;95(7):3347–51.

    Article 

    Google Scholar
     

  • Moon S, Park JS, Ahn Y. The cut-off values of triglycerides and glucose index for metabolic syndrome in American and Korean adolescents. J Korean Med Sci. 2017;32(3):427–33.

    Article 
    PubMed 

    Google Scholar
     

  • Vasques ACJ, Novaes FS, de Oliveira MS, Matos Souza JR, Yamanaka A, Pareja JC, et al. TyG index performs better than HOMA in a Brazilian population: a hyperglycemic clamp validated study. Diabetes Res Clin Pract. 2011;93(3):e98-100.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan SH, Sobia F, Niazi NK, Manzoor SM, Fazal N, Ahmad F. Metabolic clustering of risk factors: evaluation of triglyceride-glucose index (TyG index) for evaluation of insulin resistance. Diabetol Metab Syndr. 2018;5(10):74.

    Article 

    Google Scholar
     

  • Lee SH, Kwon HS, Park YM, Ha HS, Jeong SH, Yang HK, et al. Predicting the development of diabetes using the product of triglycerides and glucose: the Chungju Metabolic Disease Cohort (CMC) study. PLoS ONE. 2014;9(2): e90430.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu X, Wang L, Zhang W, Ming J, Jia A, Xu S, et al. Fasting triglycerides and glucose index is more suitable for the identification of metabolically unhealthy individuals in the Chinese adult population: a nationwide study. J Diabetes Investig. 2019;10(4):1050–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vega GL, Barlow CE, Grundy SM, Leonard D, DeFina LF. Triglyceride-to-high-density-lipoprotein-cholesterol ratio is an index of heart disease mortality and of incidence of type 2 diabetes mellitus in men. J Investig Med. 2014;62(2):345–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guarnotta V, Pillitteri G, Gambino G, Radellini S, Vigneri E, Pizzolanti G, et al. Levothyroxine and insulin requirement in autoimmune polyglandular type 3 syndrome: a real-life study. J Endocrinol Invest. 2021;44(7):1387–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen C, Xu Y, Guo ZR, Yang J, Wu M, Hu XS. The application of visceral adiposity index in identifying type 2 diabetes risks based on a prospective cohort in China. Lipids Health Dis. 2014;8(13):108.

    Article 

    Google Scholar
     

  • Du T, Sun X, Huo R, Yu X. Visceral adiposity index, hypertriglyceridemic waist and risk of diabetes: the China Health and Nutrition Survey 2009. Int J Obes (Lond). 2014;38(6):840–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng S, Shi S, Ren X, Han T, Li Y, Chen Y, et al. Triglyceride glucose-waist circumference, a novel and effective predictor of diabetes in first-degree relatives of type 2 diabetes patients: cross-sectional and prospective cohort study. J Transl Med. 2016;14(1):260.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Feng Y, Ma X, Chen K, Wu N, Wang D, et al. Visceral adiposity index and insulin secretion and action in first-degree relatives of subjects with type 2 diabetes. Diabetes Metab Res Rev. 2015;31(3):315–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuang M, Yang R, Huang X, Wang C, Sheng G, Xie G, et al. Assessing temporal differences in the predictive power of baseline TyG-related parameters for future diabetes: an analysis using time-dependent receiver operating characteristics. J Transl Med. 2023;21(1):299.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bjornstad P, Maahs DM, Duca LM, Pyle L, Rewers M, Johnson RJ, et al. Estimated insulin sensitivity predicts incident micro- and macrovascular complications in adults with type 1 diabetes over 6 years: the coronary artery calcification in type 1 diabetes study. J Diabetes Complications. 2016;30(4):586–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng H, Yu X, Li YT, Jia Z, Wang JJ, Xie YJ, et al. Association between METS-IR and prediabetes or type 2 diabetes mellitus among elderly subjects in China: a large-scale population-based study. Int J Environ Res Public Health. 2023;20(2):1053.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xuan W, Liu D, Zhong J, Luo H, Zhang X. Impacts of triglyceride glucose-waist to height ratio on diabetes incidence: a secondary analysis of a population-based longitudinal data. Front Endocrinol. 2022;22(13): 949831.

    Article 

    Google Scholar
     

  • Malek M, Khamseh ME, Chehrehgosha H, Nobarani S, Alaei-Shahmiri F. Triglyceride glucose-waist to height ratio: a novel and effective marker for identifying hepatic steatosis in individuals with type 2 diabetes mellitus. Endocrine. 2021;74(3):538–45.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li WC, Chen IC, Chang YC, Loke SS, Wang SH, Hsiao KY. Waist-to-height ratio, waist circumference, and body mass index as indices of cardiometabolic risk among 36,642 Taiwanese adults. Eur J Nutr. 2013;52(1):57–65.

    Article 
    PubMed 

    Google Scholar
     

  • Ashwell M, Gibson S. Waist-to-height ratio as an indicator of ‘early health risk’: simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. BMJ Open. 2016;6(3): e010159.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gibson S, Ashwell M. A simple cut-off for waist-to-height ratio (0·5) can act as an indicator for cardiometabolic risk: recent data from adults in the Health Survey for England. Br J Nutr. 2020;123(6):681–90.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parente EB, Mutter S, Harjutsalo V, Ahola AJ, Forsblom C, Groop PH. Waist-height ratio and waist are the best estimators of visceral fat in type 1 diabetes. Sci Rep. 2020;10(1):18575.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McLaughlin T, Reaven G, Abbasi F, Lamendola C, Saad M, Waters D, et al. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am J Cardiol. 2005;96(3):399–404.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boizel R, Benhamou PY, Lardy B, Laporte F, Foulon T, Halimi S. Ratio of triglycerides to HDL cholesterol is an indicator of LDL particle size in patients with type 2 diabetes and normal HDL cholesterol levels. Diabetes Care. 2000;23(11):1679–85.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson DP, Fesmire JD, Endres RK, Blackett PR. Increased levels of HDL-cholesterol and apolipoprotein A-I after intensified insulin therapy for diabetes. South Med J. 1985;78(6):636–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salazar MR, Carbajal HA, Espeche WG, Aizpurúa M, Leiva Sisnieguez CE, March CE, et al. Identifying cardiovascular disease risk and outcome: use of the plasma triglyceride/high-density lipoprotein cholesterol concentration ratio versus metabolic syndrome criteria. J Intern Med. 2013;273(6):595–601.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Salazar MR, Carbajal HA, Espeche WG, Leiva Sisnieguez CE, March CE, Balbín E, et al. Comparison of the abilities of the plasma triglyceride/high-density lipoprotein cholesterol ratio and the metabolic syndrome to identify insulin resistance. Diabetes Vasc Dis Res. 2013;10(4):346–52.

    Article 

    Google Scholar
     

  • Fiorentino TV, Marini MA, Succurro E, Andreozzi F, Sesti G. Relationships of surrogate indexes of insulin resistance with insulin sensitivity assessed by euglycemic hyperinsulinemic clamp and subclinical vascular damage. BMJ Open Diabetes Res care. 2019;7(1): e000911.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeda-Valdés P, Bello-Chavolla OY, Caballeros-Barragán CR, Gómez-Velasco DV, Viveros-Ruiz T, Vargas-Vázquez A, et al. Índices para la evaluación de la resistencia a la insulina en individuos mexicanos sin diabetes. Gac Med Mex. 2018;154(Supp 2):S50–5.

    PubMed 

    Google Scholar
     

  • Oza C, Khadilkar A, Karguppikar M, Gondhalekar K, Khadilkar V. Comparison of insulin sensitivity indices for detection of double diabetes in Indian adolescents with type 1 diabetes. J Pediatr Endocrinol Metab. 2022;35(8):1010–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Purnell JQ, John EH, Cleary PA, Nathan DM, Lachin JM, Zinman B, et al. The effect of excess weight gain with intensive diabetes mellitus treatment on cardiovascular disease risk factors and atherosclerosis in type 1 diabetes mellitus: results from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) study. Circulation. 2013;127(2):180–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu C, Wu D, Zheng X, Li P, Li L. Efficacy and safety of metformin for patients with type 1 diabetes mellitus: a meta-analysis. Diabetes Technol Ther. 2015;17(2):142–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staels F, Moyson C, Mathieu C. Metformin as add-on to intensive insulin therapy in type 1 diabetes mellitus. Diabetes Obes Metab. 2017;19(10):1463–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Petrie JR, Chaturvedi N, Ford I, Brouwers MCGJ, Greenlaw N, Tillin T, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Diabetes Endocrinol. 2017;5(8):597–609.

    CAS 

    Google Scholar
     

  • Särnblad S, Kroon M, Åman J. Metformin as additional therapy in adolescents with poorly controlled type 1 diabetes: randomised placebo-controlled trial with aspects on insulin sensitivity. Eur J Endocrinol. 2003;149(4):323–9.

    Article 
    PubMed 

    Google Scholar
     

  • Moon RJ, Bascombe LA, Holt RIG. The addition of metformin in type 1 diabetes improves insulin sensitivity, diabetic control, body composition and patient well-being. Diabetes Obes Metab. 2007;9(1):143–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oza C, Mondkar S, Shah N, More C, Khadilkar V, Khadilkar A. A pilot study to assess effect of metformin therapy on prevention of double diabetes in Indian adolescents with type-1 diabetes. Indian J Endocrinol Metab. 2023;27(3):201–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosenstock J, Marquard J, Laffel LM, Neubacher D, Kaspers S, Cherney DZ, et al. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials. Diabetes Care. 2018;41(12):2560–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phillip M, Mathieu C, Lind M, Araki E, di Bartolo P, Bergenstal R, et al. Long-term efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes: pooled 52-week outcomes from the DEPICT-1 and -2 studies. Diabetes Obes Metab. 2021;23(2):549–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018;27(4):740–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mathieu C, Zinman B, Hemmingsson JU, Woo V, Colman P, Christiansen E, et al. Efficacy and safety of liraglutide added to insulin treatment in type 1 diabetes: the ADJUNCT ONE treat-to-target randomized trial. Diabetes Care. 2016;39(10):1702–10.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahren B, Hirsch IB, Pieber TR, Mathieu C, Gomez-Peralta F, Hansen TK, et al. Efficacy and safety of liraglutide added to capped insulin treatment in subjects with type 1 diabetes: the ADJUNCT TWO randomized trial. Diabetes Care. 2016;39(10):1693–701.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khadilkar A, Oza C, Mondkar SA. Insulin resistance in adolescents and youth with type 1 diabetes: a review of problems and solutions. Clin Med Insights Endocrinol Diabetes. 2023;1:16.


    Google Scholar
     

  • Rosenfalck AM, Almdal T, Viggers L, Madsbad S, Hilsted J. A low-fat diet improves peripheral insulin sensitivity in patients with Type 1 diabetes. Diabet Med. 2006;23(4):384–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yki-Jarvinen H, DeFronzo RA, Koivisto VA. Normalization of insulin sensitivity in type I diabetic subjects by physical training during insulin pump therapy. Diabetes Care. 1984;7(6):520–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wallberg-Henriksson H, Gunnarsson R, Henriksson J, DeFronzo R, Felig P, Ostman J, et al. Increased peripheral insulin sensitivity and muscle mitochondrial enzymes but unchanged blood glucose control in type I diabetics after physical training. Diabetes. 1982;31(12):1044–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landt KW, Campaigne BN, James FW, Sperling MA. Effects of exercise training on insulin sensitivity in adolescents with type I diabetes. Diabetes Care. 1985;8(5):461–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related posts

    Physical activity and type 2 diabetes: optimal exercise and planning

    What causes type 2 diabetes? Tips to reduce your risk

    Groundbreaking T1D Illinois Gala Fundraiser to Benefit Type 1 Diabetes Research Held at McCormick Place in Chicago