Rosengren, A. et al. Long-term excess risk of heart failure in people with type 1 diabetes: A prospective case-control study. Lancet Diabetes Endocrinol. 3, 876–885. https://doi.org/10.1016/S2213-8587(15)00292-2 (2015).
Cieluch, A. & Zozulinska-Ziolkiewicz, D. Can we prevent mitochondrial dysfunction and diabetic cardiomyopathy in type 1 diabetes mellitus?. Int. J. Mol. Sci. 21, 2852. https://doi.org/10.3390/ijms21082852 (2020).
Alonso, N., & Mauricio, D. Pathogenesis, clinical features and treatment of diabetic cardiomyopathy. Adv. Exp. Med. Biol. 1067, 197–217. https://doi.org/10.1007/5584_2017_105 (2018).
Patterson, C. C. et al. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 157, 107842. https://doi.org/10.1016/j.diabres.2019.107842 (2019).
Ifuku, M. et al. Left atrial dysfunction and stiffness in pediatric and adult patients with Type 1 diabetes mellitus assessed with speckle tracking echocardiography. Pediatr. Diabetes 22, 303–319. https://doi.org/10.1111/pedi.13141 (2021).
Álvarez-Almazán, S., Filisola-Villaseñor, J. G., Alemán-González-Duhart, D., Tamay-Cach, F. & Mendieta-Wejebe, J. E. Current molecular aspects in the development and treatment of diabetes. J. Physiol. Biochem. 76, 13–35. https://doi.org/10.1007/s13105-019-00717-0 (2020).
Intensive Diabetes Treatment and Cardiovascular Outcomes in Type 1 Diabetes: The DCCT/EDIC study 30-year follow-up. Diabetes Care 39, 686–693. https://doi.org/10.2337/dc15-1990 (2016).
Huerta-Uribe, N., Ramírez-Vélez, R., Izquierdo, M. & García-Hermoso, A. Association between physical activity, sedentary behavior and physical fitness and glycated hemoglobin in youth with type 1 diabetes: A systematic review and meta-analysis. Sports Med. 53, 111–123. https://doi.org/10.1007/s40279-022-01741-9 (2023).
Vestberg, D., Olsson, M., Gudbjörnsdottir, S., Svensson, A. M. & Lind, M. Relationship between overweight and obesity with hospitalization for heart failure in 20,985 patients with type 1 diabetes: A population-based study from the Swedish National Diabetes Registry. Diabetes Care 36, 2857–2861. https://doi.org/10.2337/dc12-2007 (2013).
Vilarrasa, N., San Jose, P., Rubio, M. Á. & Lecube, A. Obesity in patients with type 1 diabetes: links, risks and management challenges. Diabetes Metab. Syndr. Obes. Targets Ther. 14, 2807–2827. https://doi.org/10.2147/dmso.s223618 (2021).
Corbin, K. D. et al. Obesity in type 1 diabetes: Pathophysiology, clinical impact, and mechanisms. Endocr. Rev. 39, 629–663. https://doi.org/10.1210/er.2017-00191 (2018).
Vazeou, A. et al. Increased prevalence of cardiovascular risk factors in children and adolescents with type 1 diabetes and hypertension: The SWEET international database. Diabetes Obes. Metab. 24, 2420–2430. https://doi.org/10.1111/dom.14834 (2022).
Tikkanen-Dolenc, H. et al. Frequent and intensive physical activity reduces risk of cardiovascular events in type 1 diabetes. Diabetologia 60, 574–580. https://doi.org/10.1007/s00125-016-4189-8 (2017).
Wake, A. D. Protective effects of physical activity against health risks associated with type 1 diabetes: “Health benefits outweigh the risks”. World J. Diab. 13, 161–184. https://doi.org/10.4239/wjd.v13.i3.161 (2022).
Gómez-Perez, A. M., Damas-Fuentes, M., Cornejo-Pareja, I. & Tinahones, F. J. Heart failure in type 1 diabetes: A complication of concern? A narrative review. J. Clin. Med. 10, 4497. https://doi.org/10.3390/jcm10194497 (2021).
Mandavia, C. H., Aroor, A. R., Demarco, V. G. & Sowers, J. R. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci. 92, 601–608. https://doi.org/10.1016/j.lfs.2012.10.028 (2013).
Miki, T., Yuda, S., Kouzu, H. & Miura, T. Diabetic cardiomyopathy: Pathophysiology and clinical features. Heart Failure Rev. 18, 149–166. https://doi.org/10.1007/s10741-012-9313-3 (2013).
Nemes, A. et al. Complex evaluation of left atrial dysfunction in patients with type 1 diabetes mellitus by three-dimensional speckle tracking echocardiography: results from the MAGYAR-Path Study. Anatol. J. Cardiol. 16, 587–593. https://doi.org/10.5152/AnatolJCardiol.2015.6225 (2016).
Rakha, S. & Aboelenin, H. M. Left ventricular functions in pediatric patients with ten years or more type 1 diabetes mellitus: Conventional echocardiography, tissue Doppler, and two-dimensional speckle tracking study. Pediatr. Diabetes 20, 946–954. https://doi.org/10.1111/pedi.12900 (2019).
Ward, M. Mechanisms underlying the impaired contractility of diabetic cardiomyopathy. World J. Cardiol. 6, 577. https://doi.org/10.4330/wjc.v6.i7.577 (2014).
Salvador, D. B. et al. Diabetes and myocardial fibrosis. JACC Cardiovasc. Imaging 15, 796–808. https://doi.org/10.1016/j.jcmg.2021.12.008 (2022).
Brunvand, L., Fugelseth, D., Stensaeth, K. H., Dahl-Jørgensen, K. & Margeirsdottir, H. D. Early reduced myocardial diastolic function in children and adolescents with type 1 diabetes mellitus a population-based study. BMC Cardiovasc. Disord. 16, 103. https://doi.org/10.1186/s12872-016-0288-1 (2016).
Wojcik, M. & Starzyk, J. Left ventricular diastolic dysfunction in adolescents with type 1 diabetes reflects the long- but not short-term metabolic control. J. Pediatr. Endocrinol. Metab. 23, 1055–1064. https://doi.org/10.1515/jpem.2010.167 (2010).
Nielsen, A. B. et al. Normal values and reference ranges for left atrial strain by speckle-tracking echocardiography: The Copenhagen City Heart Study. Eur. Heart J. Cardiovasc. Imaging 23, 42–51. https://doi.org/10.1093/ehjci/jeab201 (2021).
Sugimoto, T. et al. Echocardiographic reference ranges for normal left atrial function parameters: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 19, 630–638. https://doi.org/10.1093/ehjci/jey018 (2018).
Khan, M. S. et al. Left atrial function in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Eur. J. Heart Fail. 22, 472–485. https://doi.org/10.1002/ejhf.1643 (2020).
Hoit, B. Assessment of left atrial function by echocardiography: Novel insights. Curr. Cardiol. Rep. 20, 96. https://doi.org/10.1007/s11886-018-1044-1 (2018).
Boe, E. S. O. Left atrial strain imaging: ready for clinical implementation in heart failure with preserved ejection fraction. Eur. Heart J. Cardiovasc. Imaging 23, 1169–1170. https://doi.org/10.1093/ehjci/jeac059 (2022).
Singh, A. et al. Normal values of left atrial size and function and the impact of age: Results of the world alliance societies of echocardiography study. J. Am. Soc. Echocardiogr. 35, 154–164. https://doi.org/10.1016/j.echo.2021.08.008 (2022).
Morris, D. A. et al. Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction. JACC Cardiovasc. Imaging 11, 1405–1415. https://doi.org/10.1016/j.jcmg.2017.07.029 (2018).
Tadic, M. & Cuspidi, C. Left atrial function in diabetes: Does it help?. Acta Diabetol. 58, 131–137. https://doi.org/10.1007/s00592-020-01557-x (2021).
Cole, T. J. & Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obesity 7, 284–294. https://doi.org/10.1111/j.2047-6310.2012.00064.x (2012).
Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the american society of echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr. 28, 1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003 (2015).
Brudin, L. J. & Pahlm, O. Comparison of two commonly used reference materials for exercise bicycle tests with a Swedish clinical database of patients with normal outcome. Clin. Physiol. Funct. Imaging 34, 297–307. https://doi.org/10.1111/cpf.12097 (2014).
Dimeglio, L. A. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes. Pediatr. Diabetes 19, 105–114. https://doi.org/10.1111/pedi.12737 (2018).
Van Der Schueren, B. et al. Obesity in people living with type 1 diabetes. Lancet Diab. Endocrinol. 9, 776–785. https://doi.org/10.1016/s2213-8587(21)00246-1 (2021).
Kou, S. et al. Echocardiographic reference ranges for normal cardiac chamber size: Results from the NORRE study. Eur Heart J. Cardiovasc. Imaging 15, 680–690. https://doi.org/10.1093/ehjci/jet284 (2014).
Díaz, A., Zócalo, Y. & Bia, D. Percentile curves for left ventricle structural, functional and haemodynamic parameters obtained in healthy children and adolescents from echocardiography-derived data. J. Echocardiogr. 18, 16–43. https://doi.org/10.1007/s12574-019-00425-0 (2020).
Kristiansen, E. et al. Assessing heart rate variability in type 1 diabetes mellitus—Psychosocial stress a possible confounder. Ann. Noninvas. Electrocardiol. 25, e12760. https://doi.org/10.1111/anec.12760 (2020).
Metwalley, K. A., Hamed, S. A. & Farghaly, H. S. Cardiac autonomic function in children with type 1 diabetes. Eur. J. Pediatr. 177, 805–813. https://doi.org/10.1007/s00431-018-3122-1 (2018).
Rundqvist, L., Faresjö, M., Carlsson, E. & Blomstrand, P. Regular endurance training in adolescents impacts atrial and ventricular size and function. Eur. Heart J. Cardiovasc. Imaging. 18, 681–687. https://doi.org/10.1093/ehjci/jew150 (2017).
Letnes, J. M. et al. Left atrial volume, cardiorespiratory fitness, and diastolic function in healthy individuals: The HUNT study, Norway. J. Am. Heart Assoc. 9, e014682. https://doi.org/10.1161/jaha.119.014682 (2020).
Zairi, I. M. K. et al. Impairment of left and right ventricular longitudinal strain in asymptomatic children with type 1 diabetes. Indian Heart J. 71, 249–255. https://doi.org/10.1016/j.ihj.2019.04.008 (2019).
Cioffi, G., & Stefenelli, C. Influence of age on the relationship between left atrial performance and left ventricular systolic and diastolic function in systemic arterial hypertension. Exp. Clin. Cardiol. 11, 305–310 (2006).
Swedish National Diabetes Register (NDR), Swediabkids Annual Report. https://doi.org/10.18158/S1t0tko3K (2020).
Hoit, B. Left atrial size and function: Role in prognosis. J. Am. Coll. Cardiol. 63, 493–505. https://doi.org/10.1016/j.jacc.2013.10.055 (2014).
Pinhas-Hamiel, O. et al. Prevalence of overweight, obesity and metabolic syndrome components in children, adolescents and young adults with type 1 diabetes mellitus. Diab. Metab. Res. Rev. 31, 76–84. https://doi.org/10.1002/dmrr.2565 (2015).
Marlow, A. L. et al. Young children, adolescent girls and women with type 1 diabetes are more overweight and obese than reference populations, and this is associated with increased cardiovascular risk factors. Diab. Med. 36, 1487–1493. https://doi.org/10.1111/dme.14133 (2019).
Mahfouz, R. A., Gomma, A., Goda, M. & Safwat, M. Relation of left atrial stiffness to insulin resistance in obese children: Doppler strain imaging study. Echocardiography 32, 1157–1163. https://doi.org/10.1111/echo.12824 (2015).
Cleland, S. J., Fisher, B. M., Colhoun, H. M., Sattar, N. & Petrie, J. R. Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks?. Diabetologia 56, 1462–1470. https://doi.org/10.1007/s00125-013-2904-2 (2013).
Nakamura, K. et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int. J. Mol. Sci. 23, 3587. https://doi.org/10.3390/ijms23073587 (2022).
Henriksson, H. H. P. et al. Cardiorespiratory fitness, muscular strength, and obesity in adolescence and later chronic disability due to cardiovascular disease: a cohort study of 1 million men. Eur. Heart J. 41, 1503–1510. https://doi.org/10.1093/eurheartj/ehz774 (2020).
Liu, M. et al. Left atrial function in young strength athletes: Four-dimensional automatic quantitation study. Int. J. Cardiovas. Imaging 38, 1929–1937. https://doi.org/10.1007/s10554-022-02585-0 (2022).