The double burden: type 1 diabetes and heart failure—a comprehensive review | Cardiovascular Diabetology

  • Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;3:7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93:1137.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: The Framingham study. Am J Cardiol. 1974;34:29–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shaw JA, Cooper ME. Contemporary management of heart failure in patients with diabetes. Diabetes Care. 2020;43:2895–903.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Packer M. Heart failure: the most important, preventable, and treatable cardiovascular complication of type 2 diabetes. Diabetes Care. 2018;41:11–3.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conrad N, Judge A, Tran J, Mohseni H, Hedgecott D, Crespillo AP, et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet. 2018;391:572.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dauriz M, Mantovani A, Bonapace S, Verlato G, Zoppini G, Bonora E, et al. Prognostic impact of diabetes on long-term survival outcomes in patients with heart failure: a meta-analysis. Diabetes Care. 2017;40:1597–605.

    Article 
    PubMed 

    Google Scholar
     

  • MacDonald MR, Petrie MC, Varyani F, Östergren J, Michelson EL, Young JB, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) programme. Eur Heart J. 2008;29:1377–85.

    Article 
    PubMed 

    Google Scholar
     

  • Ritchie RH, Abel ED. Basic mechanisms of diabetic heart disease. Circ Res. 2020;126:1501.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso N, Moliner P, Mauricio D. Pathogenesis, clinical features and treatment of diabetic cardiomyopathy. Adv Exp Med Biol. 2018;1067:197–217.

    Article 
    PubMed 

    Google Scholar
     

  • Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-reduced and DAPA-HF trials. Lancet. 2020;396:819–29.

    Article 
    PubMed 

    Google Scholar
     

  • De Ferranti SD, De Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the american heart association and american diabetes association. Diabetes Care. 2014;37:2843–63.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin VL, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015;372:1333.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Riet EES, Hoes AW, Wagenaar KP, Limburg A, Landman MAJ, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. a systematic review. Eur J Heart Fail. 2016;18:242–52.

    Article 
    PubMed 

    Google Scholar
     

  • Avogaro A, Azzolina D, Fadini GP, Baldi I. Incidence of heart failure in patients with type 1 diabetes: a systematic review of observational studies. J Endocrinol Invest. 2021;44:745–53.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Haji M, Erqou S, Fonarow GC, Echouffo-Tcheugui JB. Type 1 diabetes and risk of heart failure: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2023;202: 110805.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McAllister DA, Read SH, Kerssens J, Livingstone S, McGurnaghan S, Jhund P, et al. Incidence of hospitalization for heart failure and case-fatality among 3.25 million people with and without diabetes mellitus. Circulation. 2018;138:2774–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rosengren A, Vestberg D, Svensson AM, Kosiborod M, Clements M, Rawshani A, et al. Long–term excess risk of heart failure in people with type 1 diabetes: a prospective case-control study. Lancet Diabetes Endocrinol. 2015;3:876–85.

    Article 
    PubMed 

    Google Scholar
     

  • Cai X, Li J, Cai W, Chen C, Ma J, Xie Z, et al. Meta-analysis of type 1 diabetes mellitus and risk of cardiovascular disease. J Diabet Complicat. 2021. https://doi.org/10.1016/j.jdiacomp.2020.107833.

    Article 

    Google Scholar
     

  • Konduracka E, Cieslik G, Galicka-Latala D, Rostoff P, Pietrucha A, Latacz P, et al. Myocardial dysfunction and chronic heart failure in patients with long-lasting type 1 diabetes: a 7-year prospective cohort study. Acta Diabetol. 2013;50:597–606.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Puig-Jové C, Julve J, Castelblanco E, Julián MT, Amigó N, Andersen HU, et al. The novel inflammatory biomarker GlycA and triglyceride-rich lipoproteins are associated with the presence of subclinical myocardial dysfunction in subjects with type 1 diabetes mellitus. Cardiovasc Diabetol. 2022. https://doi.org/10.1186/s12933-022-01652-z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gubitosi-Klug RA, Lachin JM, Backlund JYC, Lorenzi GM, Brillon DJ, Orchard TJ. Intensive diabetes treatment and cardiovascular outcomes in Type 1 diabetes: the DCCT/EDIC study 30-year follow-up. Diabetes Care. 2016;39:686–93.

    Article 

    Google Scholar
     

  • Lind M, Bounias I, Olsson M, Gudbjörnsdottir S, Svensson AM, Rosengren A. Glycaemic control and incidence of heart failure in 20,985 patients with type 1 diabetes: an observational study. Lancet. 2011;378:140–6.

    Article 
    PubMed 

    Google Scholar
     

  • Khedr D, Hafez M, Lumpuy-Castillo J, Emam S, Abdel-Massih A, Elmougy F, et al. Lipid biomarkers as predictors of diastolic dysfunction in diabetes with poor glycemic control. Int J Mol Sci. 2020;21:1–15.

    Article 

    Google Scholar
     

  • Chadalavada S, Jensen MT, Aung N, Cooper J, Lekadir K, Munroe PB, et al. Women with diabetes are at increased relative risk of heart failure compared to men: insights from UK biobank. Front Cardiovasc Med. 2021;8: 658726.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rawshani A, Sattar N, Franzén S, Rawshani A, Hattersley AT, Svensson AM, et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 2018;392:477–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei Y, Herzog K, Ahlqvist E, Andersson T, Nystrom T, Zhan Y, et al. All-cause mortality and cardiovascular and microvascular diseases in latent autoimmune diabetes in adults. Diabetes Care. 2023;46:1857–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maddaloni E, Coleman RL, Pozzilli P, Holman RR. Long-term risk of cardiovascular disease in individuals with latent autoimmune diabetes in adults (UKPDS 85). Diabetes Obes Metab. 2019;21:2115–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luk AOY, Lau ESH, Lim C, Kong APS, Chow E, Ma RCW, et al. Diabetes-related complications and mortality in patients with young-onset latent autoimmune diabetes: a 14-year analysis of the prospective Hong Kong diabetes register. Diabetes Care. 2019;42:1042–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eliasson B, Lyngfelt L, Strömblad SO, Franzén S, Eeg-Olofsson K. The significance of chronic kidney disease, heart failure and cardiovascular disease for mortality in type 1 diabetes: nationwide observational study. Sci Rep. 2022. https://doi.org/10.1038/s41598-022-22932-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30:595–602.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tj R, Mm L, Ss A, Ge L, Ha O, Mr A, et al. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest. 1977;60:885–99.

    Article 

    Google Scholar
     

  • Boyer JK, Thanigaraj S, Schechtman KB, Pérez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol. 2004;93:870–5.

    Article 
    PubMed 

    Google Scholar
     

  • Gøtzsche O, Darwish A, Gøtzsche L, Hansen L, Sørensen K. Incipient cardiomyopathy in young insulin-dependent diabetic patients: a seven-year prospective doppler echocardiographic study. Diabet Med. 1996;13:834–40.

    Article 
    PubMed 

    Google Scholar
     

  • Ifuku M, Takahashi K, Hosono Y, Iso T, Ishikawa A, Haruna H, et al. Left atrial dysfunction and stiffness in pediatric and adult patients with type 1 diabetes mellitus assessed with speckle tracking echocardiography. Pediatr Diabet. 2021;22:303–19.

    Article 

    Google Scholar
     

  • Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther. 2014;142:375–415.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013;18:149–66.

    Article 
    PubMed 

    Google Scholar
     

  • Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122:624–38.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marwick TH, Ritchie R, Shaw JE, Kaye D. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol. 2018;71:339–51.

    Article 
    PubMed 

    Google Scholar
     

  • Iribarren C, Karter AJ, Go AS, Ferrara A, Liu JY, Sidney S, et al. Glycemic control and heart failure among adult patients with diabetes. Circulation. 2001;103:2668–73.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Erqou S, Lee CTC, Suffoletto M, Echouffo-Tcheugui JB, De Boer RA, Van Melle JP, et al. Association between glycated haemoglobin and the risk of congestive heart failure in diabetes mellitus: systematic review and meta-analysis. Eur J Heart Fail. 2013;15:185–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tate M, Deo M, Cao AH, Hood SG, Huynh K, Kiriazis H, et al. Insulin replacement limits progression of diabetic cardiomyopathy in the low-dose streptozotocin-induced diabetic rat. Diab Vasc Dis Res. 2017;14:423–33.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed N. Advanced glycation endproducts–role in pathology of diabetic complications. Diabetes Res Clin Pract. 2005;67:3–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18:1–14.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie RH, Love JE, Huynh K, Bernardo BC, Henstridge DC, Kiriazis H, et al. Enhanced phosphoinositide 3-kinase(p110α) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia. 2012;55:3369–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Blasio MJ, Huynh K, Qin C, Rosli S, Kiriazis H, Ayer A, et al. Therapeutic targeting of oxidative stress with coenzyme Q10 counteracts exaggerated diabetic cardiomyopathy in a mouse model of diabetes with diminished PI3K(p110α) signaling. Free Radic Biol Med. 2015;87:137–47.

    Article 
    PubMed 

    Google Scholar
     

  • Huynh K, Kiriazis H, Du XJ, Love JE, Gray SP, Jandeleit-Dahm KA, et al. Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic Biol Med. 2013;60:307–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res. 2010;88:229.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riehle C, Bauersachs J. Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res Cardiol. 2019. https://doi.org/10.1007/s00395-018-0711-0.

    Article 

    Google Scholar
     

  • Wallace DC. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science. 1992;256:628–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Riehle C, Bauersachs J. Key inflammatory mechanisms underlying heart failure. Herz. 2019;44:96–106.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murphy SP, Kakkar R, McCarthy CP, Januzzi JL. Inflammation in heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75:1324–40.

    Article 
    PubMed 

    Google Scholar
     

  • Paulus WJ, Zile MR. From systemic inflammation to myocardial fibrosis: the heart failure with preserved ejection fraction paradigm revisited. Circ Res. 2021;128:1451–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diamant M, Lamb HJ, Smit JWA, De Roos A, Heine RJ. Diabetic cardiomyopathy in uncomplicated type 2 diabetes is associated with the metabolic syndrome and systemic inflammation. Diabetologia. 2005;48:1669–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akinkuolie AO, Buring JE, Ridker PM, Mora S. A novel protein glycan biomarker and future cardiovascular disease events. J Am Heart Assoc. 2014. https://doi.org/10.1161/JAHA.114.001221.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jadhav A, Tiwari S, Lee P, Ndisang JF. The heme oxygenase system selectively enhances the anti-inflammatory macrophage-m2 phenotype, reduces pericardial adiposity, and ameliorated cardiac injury in diabetic cardiomyopathy in zucker diabetic fatty rats. J Pharmacol Exp Ther. 2013. https://doi.org/10.1124/jpet.112.200808.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Westermann D, Rutschow S, Jäger S, Linderer A, Anker S, Riad A, et al. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes. 2007;56:641–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tschöpe C, Walther T, Escher F, Spillmann F, Du J, Altmann C, et al. Transgenic activation of the kallikrein-kinin system inhibits intramyocardial inflammation, endothelial dysfunction and oxidative stress in experimental diabetic cardiomyopathy. FASEB J. 2005;19:2057–9.

    Article 
    PubMed 

    Google Scholar
     

  • Lin Y, Tang Y, Wang F. The protective effect of HIF-1α in T lymphocytes on cardiac damage in diabetic mice. Ann Clin Lab Sci. 2016;46:32–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Abdullah CS, Li Z, Wang X, Jin ZQ. Depletion of T lymphocytes ameliorates cardiac fibrosis in streptozotocin-induced diabetic cardiomyopathy. Int Immunopharmacol. 2016;39:251–64.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Van De Weijer T, Schrauwen-Hinderling VB, Schrauwen P. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res. 2011;92:10–8.

    Article 
    PubMed 

    Google Scholar
     

  • Ussher JR. The role of cardiac lipotoxicity in the pathogenesis of diabetic cardiomyopathy. Expert Rev Cardiovasc Ther. 2014;12:345–58.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayeva M, Sawicki KT, Ardehali H. Taking diabetes to heart—deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. J Am Heart Assoc. 2013. https://doi.org/10.1161/JAHA.113.000433.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ritchie RH, Zerenturk EJ, Prakoso D, Calkin AC. Lipid metabolism and its implications for type 1 diabetes-associated cardiomyopathy. J Mol Endocrinol. 2017;58:R225–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C, et al. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2006;47:598–604.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diarte-Añazco EMG, Méndez-Lara KA, Pérez A, Alonso N, Blanco-Vaca F, Julve J. Novel insights into the role of HDL-associated sphingosine-1-phosphate in cardiometabolic diseases. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20246273.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kawaguchi M, Techigawara M, Ishihata T, Asakura T, Saito F, Maehara K, et al. A comparison of ultrastructural changes on endomyocardial biopsy specimens obtained from patients with diabetes mellitus with and without hypertension. Heart Vessel. 1997;12:267–74.

    Article 
    CAS 

    Google Scholar
     

  • Factor SM, Okun EM, Minase T. Capillary microaneurysms in the human diabetic heart. N Engl J Med. 1980;302:384–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adameova A, Dhalla NS. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev. 2014;19:25–33.

    Article 
    PubMed 

    Google Scholar
     

  • Llauradó G, Ceperuelo-Mallafré V, Vilardell C, Simó R, Albert L, Berlanga E, et al. Impaired endothelial function is not associated with arterial stiffness in adults with type 1 diabetes. Diabet Metab. 2013;39:355–62.

    Article 

    Google Scholar
     

  • Jensen MT, Sogaard P, Andersen HU, Bech J, Hansen TF, Galatius S, et al. Prevalence of systolic and diastolic dysfunction in patients with type 1 diabetes without known heart disease: the thousand & 1 study. Diabetologia. 2014;57:672–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khatter JC, Sadri P, Zhang M, Hoeschen RJ. Myocardial angiotensin II (Ang II) receptors in diabetic rats. Ann N Y Acad Sci. 1996;793:466–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sechi LA, Griffin CA, Schambelan M. The cardiac renin–angiotensin system in STZ-induced diabetes. Diabetes. 1994;43:1180–4.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ka C, Aj B, Dj K. Angiotensin II and the cardiac complications of diabetes mellitus. Curr Pharm Des. 2007;13:2721–9.

    Article 

    Google Scholar
     

  • Paolillo S, Rengo G, Pagano G, Pellegrino T, Savarese G, Femminella GD, et al. Impact of diabetes on cardiac sympathetic innervation in patients with heart failure: a 123I meta-iodobenzylguanidine (123I MIBG) scintigraphic study. Diabet Care. 2013;36:2395.

    Article 
    CAS 

    Google Scholar
     

  • Gargiulo P, Acampa W, Asile G, Abbate V, Nardi E, Marzano F, et al. 123I-MIBG imaging in heart failure: impact of comorbidities on cardiac sympathetic innervation. Eur J Nucl Med Mol Imaging. 2023;50:813–24.

    Article 
    PubMed 

    Google Scholar
     

  • Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. results of the prospective ADMIRE-HF (adreview myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol. 2010;55:2212–21.

    Article 
    PubMed 

    Google Scholar
     

  • Falcão-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. 2012;17:325–44.

    Article 
    PubMed 

    Google Scholar
     

  • Singh VP, Le B, Khode R, Baker KM, Kumar R. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes. 2008;57:3297.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Di Carli MF, Bianco-Batlles D, Landa ME, Kazmers A, Groehn H, Muzik O, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation. 1999;100:813–9.

    Article 
    PubMed 

    Google Scholar
     

  • Torry RJ, Connell PM, O’Brien DM, Chilian WM, Tomanek RJ. Sympathectomy stimulates capillary but not precapillary growth in hypertrophic hearts. Am J physiol. 1991. https://doi.org/10.1152/ajpheart.1991.260.5.H1515.

    Article 
    PubMed 

    Google Scholar
     

  • Voulgari C, Psallas M, Kokkinos A, Argiana V, Katsilambros N, Tentolouris N. The association between cardiac autonomic neuropathy with metabolic and other factors in subjects with type 1 and type 2 diabetes. J Diabet Complicat. 2011;25:159–67.

    Article 

    Google Scholar
     

  • Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    Article 
    PubMed 

    Google Scholar
     

  • Du Maddaloni E, Moretti C, Del Toro R, Sterpetti S, Ievolella MV, Arnesano G, et al. Risk of cardiac autonomic neuropathy in latent autoimmune diabetes in adults is similar to type 1 diabetes and lower compared to type 2 diabetes: a cross-sectional study. Diabet Med. 2021;38: e14455.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Debono M, Cachia E. The impact of cardiovascular autonomic neuropathy in diabetes: is it associated with left ventricular dysfunction? Auton Neurosci. 2007;132:1–7.

    Article 
    PubMed 

    Google Scholar
     

  • Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pop-Busui R, Kirkwood I, Schmid H, Marinescu V, Schroeder J, Larkin D, et al. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol. 2004;44:2368–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sousa GR, Pober D, Galderisi A, Lv HJ, Yu L, Pereira AC, et al. Glycemic control, cardiac autoimmunity, and long-term risk of cardiovascular disease in type 1 diabetes mellitus. Circulation. 2019;139:730–43.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv HJ, Havari E, Pinto S, Gottumukkala RVSRK, Cornivelli L, Raddassi K, et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J Clin Investig. 2011;121:1561–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem. 2013;288:18077.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kubli DA, Gustafsson ÅB. Unbreak my heart: targeting mitochondrial autophagy in diabetic cardiomyopathy. Antioxid Redox Signal. 2015;22:1527–44.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riehle C, Abel ED. Insulin regulation of myocardial autophagy. Circ J. 2014;78:2569.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes. 2011;60:1770–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res. 2015;116:264–78.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Y, Zhang L, Qiao Y, Zhou X, Wu G, Wang L, et al. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress. Apoptosis Enhanc Autophagy PLoS ONE. 2013;8:75927.


    Google Scholar
     

  • Lancel S, Montaigne D, Marechal X, Marciniak C, Hassoun SM, Decoster B, et al. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0041836.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo R, Zhang Y, Turdi S, Ren J. Adiponectin knockout accentuates high fat diet-induced obesity and cardiac dysfunction: role of autophagy. Biochem Biophys Acta. 2013;1832:1136–48.

    CAS 
    PubMed 

    Google Scholar
     

  • Cui M, Yu H, Wang J, Gao J, Li J. Chronic caloric restriction and exercise improve metabolic conditions of dietary-induced obese mice in autophagy correlated manner without involving AMPK. J Diabet Res. 2013. https://doi.org/10.1155/2013/852754.

    Article 

    Google Scholar
     

  • Mellor KM, Bell JR, Young MJ, Ritchie RH, Delbridge LMD. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J Mol Cell Cardiol. 2011;50:1035–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russo SB, Baicu CF, Van Laer A, Geng T, Kasiganesan H, Zile MR, et al. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J Clin Investig. 2012;122:3919–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez A, Wägner AM, Carreras G, Giménez G, Sánchez-Quesada JL, Rigla M, et al. Prevalence and phenotypic distribution of dyslipidemia in type 1 diabetes mellitus: effect of glycemic control. Arch Intern Med. 2000;160:2756–62.

    Article 
    PubMed 

    Google Scholar
     

  • Vinagre I, Sánchez-Quesada JL, Sánchez-Hernández J, Santos D, Ordoñez-Llanos J, De Leiva A, et al. Inflammatory biomarkers in type 2 diabetic patients: effect of glycemic control and impact of LDL subfraction phenotype. Cardiovasc Diabetol. 2014. https://doi.org/10.1186/1475-2840-13-34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varbo A, Benn M, Nordestgaard BG. Remnant cholesterol as a cause of ischemic heart disease: evidence, definition, measurement, atherogenicity, high risk patients, and present and future treatment. Pharmacol Ther. 2014;141:358–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Velez M, Kohli S, Sabbah HN. Animal models of insulin resistance and heart failure. Heart Fail Rev. 2014;19:1–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunlay SM, Roger VL, Weston SA, Jiang R, Redfield MM. Longitudinal changes in ejection fraction in heart failure patients with preserved and reduced ejection fraction. Circ Heart Fail. 2012;5:720–6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seferović PM, Paulus WJ. Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J. 2015;36:1718–27.

    Article 
    PubMed 

    Google Scholar
     

  • McDonagh TA, Metra M, Adamo M, Baumbach A, Böhm M, Burri H, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marx N, Federici M, Schütt K, Müller-Wieland D, Ajjan RA, Antunes MJ, et al. ESC guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J. 2023. https://doi.org/10.1007/s00059-023-05218-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso N, Lupón J, Barallat J, de Antonio M, Domingo M, Zamora E, et al. Impact of diabetes on the predictive value of heart failure biomarkers. Cardiovasc Diabetol. 2016. https://doi.org/10.1186/s12933-016-0470-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tofte N, Theilade S, Winther SA, Birkelund S, Goetze JP, Hansen TW, et al. Comparison of natriuretic peptides as risk markers for all-cause mortality and cardiovascular and renal complications in individuals with type 1 diabetes. Diabet Care. 2021;44:595–603.

    Article 
    CAS 

    Google Scholar
     

  • Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the american society of echocardiography and the european association of cardiovascular imaging. J Am Soc Echocardiogr. 2016. https://doi.org/10.1016/j.echo.2016.01.011.

    Article 
    PubMed 

    Google Scholar
     

  • Murtaza G, Virk HUH, Khalid M, Lavie CJ, Ventura H, Mukherjee D, et al. Diabetic cardiomyopathy—a comprehensive updated review. Prog Cardiovasc Dis. 2019;62:315–26.

    Article 
    PubMed 

    Google Scholar
     

  • Kaushik A, Kapoor A, Dabadghao P, Khanna R, Kumar S, Garg N, et al. Use of strain, strain rate, tissue velocity imaging, and endothelial function for early detection of cardiovascular involvement in young diabetics. Ann Pediatr Cardiol. 2021. https://doi.org/10.4103/apc.APC_158_19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seferović PM, Petrie MC, Filippatos GS, Anker SD, Rosano G, Bauersachs J, et al. Type 2 diabetes mellitus and heart failure: a position statement from the heart failure association of the european society of cardiology. Eur J Heart Fail. 2018;20:853–72.

    Article 
    PubMed 

    Google Scholar
     

  • Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation. 2022;145:E895-1032.

    PubMed 

    Google Scholar
     

  • Elsayed NA, Aleppo G, Aroda VR, Bannuru RR, Brown FM, Bruemmer D, et al. Introduction and methodology: standards of care in diabetes—2023. Diabet Care. 2023;46:S1-4.

    Article 

    Google Scholar
     

  • Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J med. 1991. https://doi.org/10.1056/NEJM199108013250501.

    Article 
    PubMed 

    Google Scholar
     

  • Young JB, Dunlap ME, Pfeffer MA, Probstfield JL, Cohen-Solal A, Dietz R, et al. Mortality and morbidity reduction with Candesartan in patients with chronic heart failure and left ventricular systolic dysfunction: results of the CHARM low-left ventricular ejection fraction trials. Circulation. 2004;110:2618–26.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacMahon S, Sharpe N. Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic heart disease. Lancet. 1997;349:375–80.

    Article 
    CAS 

    Google Scholar
     

  • Hjalmarson Å, Goldstein S, Fagerberg B, Wedel H, Waagstein F, Kjekshus J, et al. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: the metoprolol CR/XL randomized Intervention trial in congestive heart failure (MERIT-HF). MERIT-HF Study Group JAMA. 2000;283:1295–302.

    CAS 

    Google Scholar
     

  • Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. randomized aldactone evaluation study investigators. N Engl J med. 1999;341:709–17.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zannad F, McMurray JJV, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Eng J med. 2014;371:132–3.

    Article 

    Google Scholar
     

  • Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet (London, Eng). 2010;376:875–85.

    Article 
    CAS 

    Google Scholar
     

  • Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2016; 374:1094. https://doi.org/10.1056/NEJMc1600827.

  • Rajagopalan S, Brook R. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:2098–9.

    PubMed 

    Google Scholar
     

  • Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019. https://doi.org/10.1056/NEJMoa1812389.

    Article 
    PubMed 

    Google Scholar
     

  • Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383:1425–35.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McGuire DK, Shih WJ, Cosentino F, Charbonnel B, Cherney DZI, Dagogo-Jack S, et al. Association of sglt2 inhibitors with cardiovascular and kidney outcomes in patients with type 2 diabetes: a meta-analysis. JAMA Cardiol. 2021;6:148–58.

    Article 
    PubMed 

    Google Scholar
     

  • Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022;387:1089–98.

    Article 
    PubMed 

    Google Scholar
     

  • Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385:1451–61.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021;384:117–28.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Voors AA, Angermann CE, Teerlink JR, Collins SP, Kosiborod M, Biegus J, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat Med. 2022;28:568–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bethel MA, Patel RA, Merrill P, Lokhnygina Y, Buse JB, Mentz RJ, et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabet Endocrinol. 2018;6:105–13.

    Article 

    Google Scholar
     

  • Kristensen SL, Rørth R, Jhund PS, Docherty KF, Sattar N, Preiss D, et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabet Endocrinol. 2019;7:776–85.

    Article 
    CAS 

    Google Scholar
     

  • Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Rasmussen S, Davies M, et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J med. 2023;389:1069–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lincoff AM, Brown-Frandsen K, Colhoun HM, Deanfield J, Emerson SS, Esbjerg S, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med. 2023;389:2221–32.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hodrea J, Saeed A, Molnar A, Fintha A, Barczi A, Wagner LJ, et al. SGLT2 inhibitor dapagliflozin prevents atherosclerotic and cardiac complications in experimental type 1 diabetes. PLoS ONE. 2022. https://doi.org/10.1371/journal.pone.0263285.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans M, Hicks D, Patel D, Patel V, McEwan P, Dashora U. Optimising the benefits of sglt2 inhibitors for type 1 diabetes. Diabet Therapy. 2020;11:37.

    Article 

    Google Scholar
     

  • Dandona P, Mathieu C, Phillip M, Hansen L, Tschöpe D, Thorén F, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes: the DEPICT-1 52-week study. Diabet Care. 2018;41:2552–9.

    Article 
    CAS 

    Google Scholar
     

  • Buse JB, Garg SK, Rosenstock J, Bailey TS, Banks P, Bode BW, et al. Sotagliflozin in combination with optimized insulin therapy in adults with type 1 diabetes: the North American Intandem1 study. Diabet Care. 2018;41:1970–80.

    Article 
    CAS 

    Google Scholar
     

  • Danne T, Cariou B, Banks P, Brandle M, Brath H, Franek E, et al. HbA1c and hypoglycemia reductions at 24 and 52 weeks with sotagliflozin in combination with insulin in adults with type 1 diabetes: the European Intandem2 study. Diabet Care. 2018;41:1981–90.

    Article 
    CAS 

    Google Scholar
     

  • Cavallari I, Maddaloni E, Pieralice S, Mulè MT, Buzzetti R, Ussia GP, et al. The vicious circle of left ventricular dysfunction and diabetes: from pathophysiology to emerging treatments. J Clin Endocrinol Metab. 2020;105:e3075–89.

    Article 

    Google Scholar
     

  • Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • The Diabetes Control and Complications Trial (DCCT) Research Group. Effect of intensive diabetes management on macrovascular events and risk factors in the diabetes control and complications trial. Am J cardiol. 1995;75:894–903.

    Article 

    Google Scholar
     

  • Nathan DM, Bayless M, Cleary P, Genuth S, Gubitosi-Klug R, Lachin JM, et al. Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: advances and contributions. Diabetes. 2013;62:3976–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner R. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.

    Article 

    Google Scholar
     

  • Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. Engl J Med. 1993;329:977–86.

    Article 
    CAS 

    Google Scholar
     

  • Turner R. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article 

    Google Scholar
     

  • Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ismail-Beigi F, Craven T, Banerji MA, Basile J, Calles J, Cohen RM, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet (London, England). 2010;376:419–30.

    Article 
    PubMed 

    Google Scholar
     

  • Castagno D, Baird-Gunning J, Jhund PS, Biondi-Zoccai G, MacDonald MR, Petrie MC, et al. Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: evidence from a 37,229 patient meta-analysis. Am Heart J. 2011. https://doi.org/10.1016/j.ahj.2011.07.030.

    Article 
    PubMed 

    Google Scholar
     

  • Jarnert C, Landstedt-Hallin L, Malmberg K, Melcher A, Ohrvik J, Persson H, et al. A randomized trial of the impact of strict glycaemic control on myocardial diastolic function and perfusion reserve: a report from the DADD (diabetes mellitus and diastolic dysfunction) study. Eur J Heart Fail. 2009;11:39–47.

    Article 
    PubMed 

    Google Scholar
     

  • Von Bibra H, Hansen A, Dounis V, Bystedt T, Malmberg K, Rydén L. Augmented metabolic control improves myocardial diastolic function and perfusion in patients with non-insulin dependent diabetes. Heart (British Cardiac Soc). 2004;90:1483–4.

    Article 

    Google Scholar
     

  • Julián MT, Alonso N, Lupón J, Gavidia-Bovadilla G, Ferrer E, De Antonio M, et al. Long-term LVEF trajectories in patients with type 2 diabetes and heart failure: diabetic cardiomyopathy may underlie functional decline. Cardiovasc Diabetol. 2020. https://doi.org/10.1186/s12933-020-01011-w.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Standl E, Stevens SR, Lokhnygina Y, Angelyn Bethel M, Buse JB, Gustavson SM, et al. Confirming the bidirectional nature of the association between severe hypoglycemic and cardiovascular events in type 2 diabetes: insights from EXSCEL. Diabet Care. 2020;43:643–52.

    Article 

    Google Scholar
     

  • Standl E, Stevens SR, Armstrong PW, Buse JB, Chan JCN, Green JB, et al. Increased risk of severe hypoglycemic events before and after cardiovascular outcomes in TECOS suggests an at-risk type 2 diabetes frail patient phenotype. Diabet Care. 2018;41:596–603.

    Article 

    Google Scholar
     

  • Pratley RE, Husain M, Lingvay I, Pieber TR, Mark T, Saevereid HA, et al. Heart failure with insulin degludec versus glargine U100 in patients with type 2 diabetes at high risk of cardiovascular disease: DEVOTE 14. Cardiovasc Diabetol. 2019. https://doi.org/10.1186/s12933-019-0960-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fitchett D, Inzucchi SE, Wanner C, Mattheus M, George JT, Vedin O, et al. Relationship between hypoglycaemia, cardiovascular outcomes, and empagliflozin treatment in the EMPA-REG OUTCOME® trial. Eur Heart J. 2020;41:209.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Das SR, Drazner MH, Yancy CW, Stevenson LW, Gersh BJ, Dries DL. Effects of diabetes mellitus and ischemic heart disease on the progression from asymptomatic left ventricular dysfunction to symptomatic heart failure: a retrospective analysis from the studies of left ventricular dysfunction (SOLVD) prevention trial. Am Heart J. 2004;148:883–8.

    Article 
    PubMed 

    Google Scholar
     

  • Elder DHJ, Singh JSS, Levin D, Donnelly LA, Choy AM, George J, et al. Mean HbA1c and mortality in diabetic individuals with heart failure: a population cohort study. Eur J Heart Fail. 2016;18:94–102.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gruden G, Barutta F, Chaturvedi N, Schalkwijk C, Stehouwer CD, Witte DR, et al. Severe hypoglycemia and cardiovascular disease incidence in type 1 diabetes: the EURODIAB prospective complications study. Diabet Care. 2012. https://doi.org/10.2337/dc11-1531.

    Article 

    Google Scholar
     

  • Lu CL, Shen HN, Hu SC, Der WJ, Li CY. A population-based study of all-cause mortality and cardiovascular disease in association with prior history of hypoglycemia among patients with type 1 diabetes. Diabet Care. 2016. https://doi.org/10.2337/dc15-2418.

    Article 

    Google Scholar
     

  • Giménez M, López JJ, Castell C, Conget I. Hypoglycaemia and cardiovascular disease in type 1 diabetes results from the catalan national public health registry on insulin pump therapy. Diabet Res Clin Pract. 2012. https://doi.org/10.1016/j.diabres.2012.01.014.

    Article 

    Google Scholar
     

  • Khunti K, Davies M, Majeed A, Thorsted BL, Wolden ML, Paul SK. Hypoglycemia and risk of cardiovascular disease and all-cause mortality in insulin-treated people with type 1 and type 2 diabetes: a cohort study. Diabet Care. 2015;38:316–22.

    Article 

    Google Scholar
     

  • McCoy RG, Shah ND, Van Houten HK, Wermers RA, Ziegenfuss JY, Smith SA. Increased mortality of patients with diabetes reporting severe hypoglycemia. Diabet Care. 2012. https://doi.org/10.2337/dc11-2054.

    Article 

    Google Scholar
     

  • Colette C, Monnier L. Acute glucose fluctuations and chronic sustained hyperglycemia as risk factors for cardiovascular diseases in patients with type 2 diabetes. Horm Metab Res. 2007;39:683–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia J, Hu S, Xu J, Hao H, Yin C, Xu D. The correlation between glucose fluctuation from self-monitored blood glucose and the major adverse cardiac events in diabetic patients with acute coronary syndrome during a 6-month follow-up by wechat application. Clin Chem Lab Med. 2018;56:2119–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saisho Y. Glycemic variability and oxidative stress: a link between diabetes and cardiovascular disease? Int J Mol Sci. 2014;15:18381.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez M, Santamarina J, Pavesi A, Musso C, Umpierrez GE. Glycemic variability and cardiovascular disease in patients with type 2 diabetes. BMJ Open Diabet Res Care. 2021. https://doi.org/10.1136/bmjdrc-2020-002032.

    Article 

    Google Scholar
     

  • Helleputte S, De Backer T, Lapauw B, Shadid S, Celie B, Van Eetvelde B, et al. The relationship between glycaemic variability and cardiovascular autonomic dysfunction in patients with type 1 diabetes: a systematic review. Diabetes/metabolism Res Rev. 2020. https://doi.org/10.1002/dmrr.3301.

    Article 

    Google Scholar
     

  • Alfieri V, Myasoedova VA, Vinci MC, Rondinelli M, Songia P, Massaiu I, et al. The role of glycemic variability in cardiovascular disorders. Int J mol sci. 2021. https://doi.org/10.3390/ijms22168393.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillip M, Nimri R, Bergenstal RM, Barnard-Kelly K, Danne T, Hovorka R, et al. Consensus recommendations for the use of automated insulin delivery technologies in clinical practice. Endocr Rev. 2023;44:254.

    Article 
    PubMed 

    Google Scholar
     

  • Pauley ME, Tommerdahl KL, Snell-Bergeon JK, Forlenza GP. Continuous glucose monitor, insulin pump, and automated insulin delivery therapies for type 1 diabetes: an update on potential for cardiovascular benefits. Curr Cardiol Rep. 2022;24:2043–56.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamrath C, Tittel SR, Kapellen TM, von dem Berge T, Heidtmann B, Nagl K, et al. Early versus delayed insulin pump therapy in children with newly diagnosed type 1 diabetes: results from the multicentre, prospective diabetes follow-up DPV registry. Lancet Child Adolesc Health. 2021;5:17–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Derosa G, Catena G, Scelsi L, D’Angelo A, Raddino R, Cosentino E, et al. Glyco-metabolic control, inflammation markers, and cardiovascular outcomes in type 1 and type 2 diabetic patients on insulin pump or multiple daily injection (italico study). Diabetes/metabolism Res Rev. 2020. https://doi.org/10.1002/dmrr.3219.

    Article 

    Google Scholar
     

  • Steineck I, Cederholm J, Eliasson B, Rawshani A, Eeg-Olofsson K, Svensson AM, et al. Insulin pump therapy, multiple daily injections, and cardiovascular mortality in 18,168 people with type 1 diabetes: observational study. BMJ (Clin Research Ed). 2015. https://doi.org/10.1136/bmj.h3234.

    Article 

    Google Scholar
     

  • Giménez-Pérez G, Viñals C, Mata-Cases M, Vlacho B, Real J, Franch-Nadal J, et al. Epidemiology of the first-ever cardiovascular event in people with type 1 diabetes: a retrospective cohort population-based study in catalonia. Cardiovasc Diabetol. 2023. https://doi.org/10.1186/s12933-023-01917-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Larsson SC, Wallin A, Håkansson N, Stackelberg O, Bäck M, Wolk A. Type 1 and type 2 diabetes mellitus and incidence of seven cardiovascular diseases. Int J Cardiol. 2018;262:66–70.

    Article 
    PubMed 

    Google Scholar
     

  • Related posts

    Boys are at higher risk of developing type 1 diabetes than girls after childhood

    Cannabis use on the rise among adults with diabetes, despite potential risks

    Healthy SA: Type 1 diabetes isn't just a children's disease