World Health Organization. Diagnosis and Management of Type 2 Diabetes; 2020 (World Health Organization, 2020).
Cousin, E. et al. Burden of diabetes and hyperglycaemia in adults in the Americas, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Diabetes Endocrinol. 10(9), 655–667 (2022).
Chung, W. K. et al. Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43(7), 1617–1635 (2020).
Schiborn, C. & Schulze, M. B. Precision prognostics for the development of complications in diabetes. Diabetologia 65(11), 1867–1882 (2022).
Aljafary, M. A. & Al-Suhaimi, E. A. Adiponectin system (rescue hormone): the missing link between metabolic and cardiovascular diseases. Pharmaceutics 14(7), 1430 (2022).
Rutkowski, J. M. et al. Adiponectin promotes functional recovery after podocyte ablation. Journal of the American Society of Nephrology 24(2), 268–282 (2013).
Berg, A. H., Combs, T. P., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature medicine 7(8), 947–953 (2001).
Ye, R. et al. Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration. Elife 3, e03851 (2014).
Okamoto, Y. et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106(22), 2767–2770 (2002).
Oshima, K. et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochemical and biophysical research communications 331(2), 520–526 (2005).
Takemura, Y., Walsh, K. & Ouchi, N. Adiponectin and cardiovascular inflammatory responses. Current atherosclerosis reports 9(3), 238–243 (2007).
Pajvani, U. B. et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. Journal of Biological Chemistry 279(13), 12152–12162 (2004).
Hanley, A. J. et al. Adiponectin and the incidence of type 2 diabetes in Hispanics and African Americans: the IRAS Family Study. Diabetes care 34(10), 2231–2236 (2011).
Alfaqih, M. A., Al-Hawamdeh, A., Amarin, Z. O., Khader, Y. S., Mhedat, K., & Allouh, M. Z. (2022). Single nucleotide polymorphism in the ADIPOQ gene modifies adiponectin levels and glycemic control in type two diabetes mellitus patients. BioMed Research International, 2022.
Zhang, D., Ma, J., Brismar, K., Efendic, S. & Gu, H. F. A single nucleotide polymorphism alters the sequence of SP1 binding site in the adiponectin promoter region and is associated with diabetic nephropathy among type 1 diabetic patients in the Genetics of Kidneys in Diabetes Study. Journal of Diabetes and its Complications 23(4), 265–272 (2009).
Wang, G., Wang, Y. & Luo, Z. Effect of Adiponectin Variant on Lipid Profile and Plasma Adiponectin Levels: A Multicenter Systematic Review and Meta-Analysis. Cardiovascular therapeutics 2022, 4395266. https://doi.org/10.1155/2022/4395266 (2022).
Sun, P., Liu, L., Chen, J., Chen, Y., Shi, L., Imam, M. U., et al. (2017). The polymorphism of rs266729 in adiponectin gene and type 2 diabetes mellitus: a meta-analysis. Medicine, 96(47).
De Luis, D. A., Izaola, O., Primo, D., & Aller, R. (2020). Relation of a variant in adiponectin gene (rs266729) with metabolic syndrome and diabetes mellitus type 2 in adult obese subjects. European Review for Medical & Pharmacological Sciences, 24(20).
Wu, L. & Wang, C. C. Genetic variants in promoter regions associated with type 2 diabetes mellitus: A large-scale meta-analysis and subgroup analysis. Journal of Cellular Biochemistry 120(8), 13012–13025 (2019).
Truong, S., Tran, N. Q., Ma, P. T., Hoang, C. K., Le, B. H., Dinh, T., et al. (2022). Association of ADIPOQ single-nucleotide polymorphisms with the two clinical phenotypes type 2 diabetes mellitus and metabolic syndrome in a Kinh Vietnamese population. Diabetes, metabolic syndrome and obesity: targets and therapy, 307–319.
Cauchi, S. et al. The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC medical genetics 9, 1–9 (2008).
Smetnev, S. et al. Associations of SNPs of the ADIPOQ gene with serum adiponectin levels, unstable angina, and coronary artery disease. Biomolecules 9(10), 537 (2019).
Yun, J. H. et al. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients. PLoS One 15(10), e0241365 (2020).
Filla, L. A. & Edwards, J. L. Metabolomics in diabetic complications. Molecular BioSystems 12(4), 1090–1105 (2016).
Prior, S. L. et al. Association between the adiponectin promoter rs266729 gene variant and oxidative stress in patients with diabetes mellitus. European Heart Journal 30(10), 1263–1269 (2009).
Diniz, T. G. et al. Metabolomic analysis of retinopathy stages and amputation in type 2 diabetes. Clinical Nutrition ESPEN 61, 158–167 (2024).
Joosten, M. M. et al. Total adiponectin and risk of symptomatic lower extremity peripheral artery disease in men. Arteriosclerosis, thrombosis, and vascular biology 33(5), 1092–1097 (2013).
Chen, H. H. et al. Chronic Kidney Disease: Interaction of Adiponectin Gene Polymorphisms and Diabetes. International journal of molecular sciences 24(9), 8128 (2023).
Coltell, O. et al. Circulating adiponectin and its association with metabolic traits and Type 2 Diabetes: Gene-diet interactions focusing on selected gene variants and at the genome-wide level in high-cardiovascular risk Mediterranean subjects. Nutrients 13(2), 541 (2021).
Wang, Y. et al. Plasma adiponectin levels and type 2 diabetes risk: a nested case-control study in a Chinese population and an updated meta-analysis. Scientific reports 8(1), 406 (2018).
Williams, P. T. Quantile-dependent expressivity of plasma adiponectin concentrations may explain its sex-specific heritability, gene-environment interactions, and genotype-specific response to postprandial lipemia. PeerJ 8, e10099 (2020).
Lehn-Stefan, A. et al. Elevated circulating glutamate is associated with subclinical atherosclerosis independently of established risk markers: A cross-sectional study. The Journal of Clinical Endocrinology & Metabolism 106(2), e982–e989 (2021).
Porcu, E. et al. Triangulating evidence from longitudinal and Mendelian randomization studies of metabolomic biomarkers for type 2 diabetes. Scientific Reports 11(1), 6197 (2021).
Rhee, S. Y. et al. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy. Metabolomics 14, 1–10 (2018).
Navarro, S. L. et al. Plasma metabolomics profiles suggest beneficial effects of a low–glycemic load dietary pattern on inflammation and energy metabolism. The American journal of clinical nutrition 110(4), 984–992 (2019).
Hasani, M. et al. Effect of glutamine supplementation on cardiometabolic risk factors and inflammatory markers: a systematic review and meta-analysis. BMC cardiovascular disorders 21, 1–21 (2021).
Guasch-Ferré, M. et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes care 39(5), 833–846 (2016).
Vanweert, F., Schrauwen, P. & Phielix, E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutrition & diabetes 12(1), 35 (2022).
Borges, M. C., Barros, A. J., Ferreira, D. L. S., Casas, J. P., Horta, B. L., Kivimaki, M., et al. (2017). Metabolic profiling of adiponectin levels in adults: Mendelian randomization analysis. Circulation: Cardiovascular Genetics, 10(6), e001837.
Sun, Y., Gao, H. Y., Fan, Z. Y., He, Y. & Yan, Y. X. Metabolomics signatures in type 2 diabetes: a systematic review and integrative analysis. The Journal of Clinical Endocrinology & Metabolism 105(4), 1000–1008 (2020).
Guasch-Ferré, M. et al. Glycolysis/gluconeogenesis-and tricarboxylic acid cycle–related metabolites, Mediterranean diet, and type 2 diabetes. The American journal of clinical nutrition 111(4), 835–844 (2020).
Lin, W. et al. Metabolomics and correlation network analyses of core biomarkers in type 2 diabetes. Amino acids 52, 1307–1317 (2020).
Dutta, T. et al. Impact of long-term poor and good glycemic control on metabolomics alterations in type 1 diabetic people. The Journal of Clinical Endocrinology & Metabolism 101(3), 1023–1033 (2016).
Moloney, D. J. & Haltiwanger, R. S. The O-linked fucose glycosylation pathway: identification and characterization of a uridine diphosphoglucose: fucose-β1, 3-glucosyltransferase activity from Chinese hamster ovary cells. Glycobiology 9(7), 679–687 (1999).
Al-Aama, J. Y., Al Mahdi, H. B., Salama, M. A., Bakur, K. H., Alhozali, A., Mosli, H. H., et al. (2019). Detection of secondary metabolites as biomarkers for the early diagnosis and prevention of type 2 diabetes. Diabetes, metabolic syndrome and obesity: targets and therapy, 2675–2684.
Chu, K. O. et al. Untargeted metabolomic analysis of aqueous humor in diabetic macular edema. Molecular Vision 28, 230 (2022).
Li, L. O. et al. Early hepatic insulin resistance in mice: a metabolomics analysis. Molecular endocrinology 24(3), 657–666 (2010).
Burrage, L. C. et al. Untargeted metabolomic profiling reveals multiple pathway perturbations and new clinical biomarkers in urea cycle disorders. Genetics in Medicine 21(9), 1977–1986 (2019).
Romero, M. J. et al. Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circulation research 102(1), 95–102 (2008).
Pietzner, M. et al. Comprehensive metabolic profiling of chronic low-grade inflammation among generally healthy individuals. BMC medicine 15(1), 1–12 (2017).
Carracedo, J. et al. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells. The FASEB Journal 25(4), 1314–1322 (2011).
Lu, Y. et al. Metabolic signatures and risk of type 2 diabetes in a Chinese population: an untargeted metabolomics study using both LC-MS and GC-MS. Diabetologia 59, 2349–2359 (2016).
Cao, Y. F. et al. Plasma levels of amino acids related to urea cycle and risk of type 2 diabetes mellitus in Chinese adults. Frontiers in endocrinology 10, 50 (2019).
Petrus, P. et al. Glutamine links obesity to inflammation in human white adipose tissue. Cell metabolism 31(2), 375–390 (2020).
Maltais-Payette, I., Allam-Ndoul, B., Pérusse, L., Vohl, M. C. & Tchernof, A. Circulating glutamate level as a potential biomarker for abdominal obesity and metabolic risk. Nutrition, Metabolism and Cardiovascular Diseases 29(12), 1353–1360 (2019).