Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Home Type 2 Analysis of metabolites associated with ADIPOQ genotypes in individuals with type 2 diabetes mellitus

Analysis of metabolites associated with ADIPOQ genotypes in individuals with type 2 diabetes mellitus

by Caroline Severo de Assis
0 comments Donate
  • World Health Organization. Diagnosis and Management of Type 2 Diabetes; 2020 (World Health Organization, 2020).


    Google Scholar
     

  • Cousin, E. et al. Burden of diabetes and hyperglycaemia in adults in the Americas, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Diabetes Endocrinol. 10(9), 655–667 (2022).

    Article 

    Google Scholar
     

  • Chung, W. K. et al. Precision medicine in diabetes: a consensus report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 43(7), 1617–1635 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiborn, C. & Schulze, M. B. Precision prognostics for the development of complications in diabetes. Diabetologia 65(11), 1867–1882 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aljafary, M. A. & Al-Suhaimi, E. A. Adiponectin system (rescue hormone): the missing link between metabolic and cardiovascular diseases. Pharmaceutics 14(7), 1430 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutkowski, J. M. et al. Adiponectin promotes functional recovery after podocyte ablation. Journal of the American Society of Nephrology 24(2), 268–282 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berg, A. H., Combs, T. P., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature medicine 7(8), 947–953 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, R. et al. Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes β-cell regeneration. Elife 3, e03851 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okamoto, Y. et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106(22), 2767–2770 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Oshima, K. et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast. Biochemical and biophysical research communications 331(2), 520–526 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takemura, Y., Walsh, K. & Ouchi, N. Adiponectin and cardiovascular inflammatory responses. Current atherosclerosis reports 9(3), 238–243 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pajvani, U. B. et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. Journal of Biological Chemistry 279(13), 12152–12162 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hanley, A. J. et al. Adiponectin and the incidence of type 2 diabetes in Hispanics and African Americans: the IRAS Family Study. Diabetes care 34(10), 2231–2236 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alfaqih, M. A., Al-Hawamdeh, A., Amarin, Z. O., Khader, Y. S., Mhedat, K., & Allouh, M. Z. (2022). Single nucleotide polymorphism in the ADIPOQ gene modifies adiponectin levels and glycemic control in type two diabetes mellitus patients. BioMed Research International, 2022.

  • Zhang, D., Ma, J., Brismar, K., Efendic, S. & Gu, H. F. A single nucleotide polymorphism alters the sequence of SP1 binding site in the adiponectin promoter region and is associated with diabetic nephropathy among type 1 diabetic patients in the Genetics of Kidneys in Diabetes Study. Journal of Diabetes and its Complications 23(4), 265–272 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, G., Wang, Y. & Luo, Z. Effect of Adiponectin Variant on Lipid Profile and Plasma Adiponectin Levels: A Multicenter Systematic Review and Meta-Analysis. Cardiovascular therapeutics 2022, 4395266. https://doi.org/10.1155/2022/4395266 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, P., Liu, L., Chen, J., Chen, Y., Shi, L., Imam, M. U., et al. (2017). The polymorphism of rs266729 in adiponectin gene and type 2 diabetes mellitus: a meta-analysis. Medicine, 96(47).

  • De Luis, D. A., Izaola, O., Primo, D., & Aller, R. (2020). Relation of a variant in adiponectin gene (rs266729) with metabolic syndrome and diabetes mellitus type 2 in adult obese subjects. European Review for Medical & Pharmacological Sciences24(20).

  • Wu, L. & Wang, C. C. Genetic variants in promoter regions associated with type 2 diabetes mellitus: A large-scale meta-analysis and subgroup analysis. Journal of Cellular Biochemistry 120(8), 13012–13025 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Truong, S., Tran, N. Q., Ma, P. T., Hoang, C. K., Le, B. H., Dinh, T., et al. (2022). Association of ADIPOQ single-nucleotide polymorphisms with the two clinical phenotypes type 2 diabetes mellitus and metabolic syndrome in a Kinh Vietnamese population. Diabetes, metabolic syndrome and obesity: targets and therapy, 307–319.

  • Cauchi, S. et al. The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC medical genetics 9, 1–9 (2008).

    Article 

    Google Scholar
     

  • Smetnev, S. et al. Associations of SNPs of the ADIPOQ gene with serum adiponectin levels, unstable angina, and coronary artery disease. Biomolecules 9(10), 537 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yun, J. H. et al. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients. PLoS One 15(10), e0241365 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Filla, L. A. & Edwards, J. L. Metabolomics in diabetic complications. Molecular BioSystems 12(4), 1090–1105 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prior, S. L. et al. Association between the adiponectin promoter rs266729 gene variant and oxidative stress in patients with diabetes mellitus. European Heart Journal 30(10), 1263–1269 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Diniz, T. G. et al. Metabolomic analysis of retinopathy stages and amputation in type 2 diabetes. Clinical Nutrition ESPEN 61, 158–167 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Joosten, M. M. et al. Total adiponectin and risk of symptomatic lower extremity peripheral artery disease in men. Arteriosclerosis, thrombosis, and vascular biology 33(5), 1092–1097 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, H. H. et al. Chronic Kidney Disease: Interaction of Adiponectin Gene Polymorphisms and Diabetes. International journal of molecular sciences 24(9), 8128 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coltell, O. et al. Circulating adiponectin and its association with metabolic traits and Type 2 Diabetes: Gene-diet interactions focusing on selected gene variants and at the genome-wide level in high-cardiovascular risk Mediterranean subjects. Nutrients 13(2), 541 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Y. et al. Plasma adiponectin levels and type 2 diabetes risk: a nested case-control study in a Chinese population and an updated meta-analysis. Scientific reports 8(1), 406 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Williams, P. T. Quantile-dependent expressivity of plasma adiponectin concentrations may explain its sex-specific heritability, gene-environment interactions, and genotype-specific response to postprandial lipemia. PeerJ 8, e10099 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lehn-Stefan, A. et al. Elevated circulating glutamate is associated with subclinical atherosclerosis independently of established risk markers: A cross-sectional study. The Journal of Clinical Endocrinology & Metabolism 106(2), e982–e989 (2021).

    Article 

    Google Scholar
     

  • Porcu, E. et al. Triangulating evidence from longitudinal and Mendelian randomization studies of metabolomic biomarkers for type 2 diabetes. Scientific Reports 11(1), 6197 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhee, S. Y. et al. Plasma glutamine and glutamic acid are potential biomarkers for predicting diabetic retinopathy. Metabolomics 14, 1–10 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Navarro, S. L. et al. Plasma metabolomics profiles suggest beneficial effects of a low–glycemic load dietary pattern on inflammation and energy metabolism. The American journal of clinical nutrition 110(4), 984–992 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hasani, M. et al. Effect of glutamine supplementation on cardiometabolic risk factors and inflammatory markers: a systematic review and meta-analysis. BMC cardiovascular disorders 21, 1–21 (2021).

    Article 

    Google Scholar
     

  • Guasch-Ferré, M. et al. Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes care 39(5), 833–846 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vanweert, F., Schrauwen, P. & Phielix, E. Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutrition & diabetes 12(1), 35 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Borges, M. C., Barros, A. J., Ferreira, D. L. S., Casas, J. P., Horta, B. L., Kivimaki, M., et al. (2017). Metabolic profiling of adiponectin levels in adults: Mendelian randomization analysis. Circulation: Cardiovascular Genetics10(6), e001837.

  • Sun, Y., Gao, H. Y., Fan, Z. Y., He, Y. & Yan, Y. X. Metabolomics signatures in type 2 diabetes: a systematic review and integrative analysis. The Journal of Clinical Endocrinology & Metabolism 105(4), 1000–1008 (2020).

    Article 

    Google Scholar
     

  • Guasch-Ferré, M. et al. Glycolysis/gluconeogenesis-and tricarboxylic acid cycle–related metabolites, Mediterranean diet, and type 2 diabetes. The American journal of clinical nutrition 111(4), 835–844 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, W. et al. Metabolomics and correlation network analyses of core biomarkers in type 2 diabetes. Amino acids 52, 1307–1317 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutta, T. et al. Impact of long-term poor and good glycemic control on metabolomics alterations in type 1 diabetic people. The Journal of Clinical Endocrinology & Metabolism 101(3), 1023–1033 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Moloney, D. J. & Haltiwanger, R. S. The O-linked fucose glycosylation pathway: identification and characterization of a uridine diphosphoglucose: fucose-β1, 3-glucosyltransferase activity from Chinese hamster ovary cells. Glycobiology 9(7), 679–687 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Aama, J. Y., Al Mahdi, H. B., Salama, M. A., Bakur, K. H., Alhozali, A., Mosli, H. H., et al. (2019). Detection of secondary metabolites as biomarkers for the early diagnosis and prevention of type 2 diabetes. Diabetes, metabolic syndrome and obesity: targets and therapy, 2675–2684.

  • Chu, K. O. et al. Untargeted metabolomic analysis of aqueous humor in diabetic macular edema. Molecular Vision 28, 230 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, L. O. et al. Early hepatic insulin resistance in mice: a metabolomics analysis. Molecular endocrinology 24(3), 657–666 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burrage, L. C. et al. Untargeted metabolomic profiling reveals multiple pathway perturbations and new clinical biomarkers in urea cycle disorders. Genetics in Medicine 21(9), 1977–1986 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romero, M. J. et al. Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circulation research 102(1), 95–102 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pietzner, M. et al. Comprehensive metabolic profiling of chronic low-grade inflammation among generally healthy individuals. BMC medicine 15(1), 1–12 (2017).

    Article 

    Google Scholar
     

  • Carracedo, J. et al. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells. The FASEB Journal 25(4), 1314–1322 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y. et al. Metabolic signatures and risk of type 2 diabetes in a Chinese population: an untargeted metabolomics study using both LC-MS and GC-MS. Diabetologia 59, 2349–2359 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. F. et al. Plasma levels of amino acids related to urea cycle and risk of type 2 diabetes mellitus in Chinese adults. Frontiers in endocrinology 10, 50 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Petrus, P. et al. Glutamine links obesity to inflammation in human white adipose tissue. Cell metabolism 31(2), 375–390 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maltais-Payette, I., Allam-Ndoul, B., Pérusse, L., Vohl, M. C. & Tchernof, A. Circulating glutamate level as a potential biomarker for abdominal obesity and metabolic risk. Nutrition, Metabolism and Cardiovascular Diseases 29(12), 1353–1360 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You may also like

    Today’s Diabetes News, your ultimate destination for up-to-date and insightful information on diabetes, health tips, and living a fulfilling life with diabetes. Our mission is to empower and support individuals with diabetes, their loved ones, and the wider community by providing reliable, relevant, and engaging content that fosters a healthier and happier life.

    Most Viewed Articles

    Latest Articles

    Copyright MatchingDonors.com©️ 2025 All rights reserved.

    Are you sure want to unlock this post?
    Unlock left : 0
    Are you sure want to cancel subscription?
    -
    00:00
    00:00
      -
      00:00
      00:00