Home Type 2 Characterization of the gut bacterial and viral microbiota in latent autoimmune diabetes in adults

Characterization of the gut bacterial and viral microbiota in latent autoimmune diabetes in adults

by Dan Hesse
0 comments Donate
  • Tuomi, T. et al. The many faces of diabetes: A disease with increasing heterogeneity. Lancet 383, 1084–1094. https://doi.org/10.1016/S0140-6736(13)62219-9 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Tuomi, T. et al. Clinical and genetic characteristics of type 2 diabetes with and without GAD antibodies. Diabetes 48, 150–157 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zinman, B. et al. Phenotypic characteristics of GAD antibody-positive recently diagnosed patients with type 2 diabetes in North America and Europe. Diabetes 53, 3193–3200 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hawa, M. I. et al. Metabolic syndrome and autoimmune diabetes: Action LADA 3. Diabetes Care 32, 160–164 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen, M. K. et al. Latent autoimmune diabetes in adults differs genetically from classical type 1 diabetes diagnosed after the age of 35 years. Diabetes Care 33, 2062–2064 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Z. et al. Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China Study): A nationwide, multicenter, clinic-based cross-sectional study. Diabetes 62, 543–550 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mishra, R. et al. Relative contribution of type 1 and type 2 diabetes loci to the genetic etiology of adult-onset, non-insulin-requiring autoimmune diabetes. BMC Med 15, 1 (2017).

    Article 

    Google Scholar
     

  • Cousminer, D. L. et al. First genome-wide association study of latent autoimmune diabetes in adults reveals novel insights linking immune and metabolic diabetes. in Diabetes Care vol. 41 2396–2403 (American Diabetes Association Inc., 2018).

  • Andersen, M. K. et al. Type 2 diabetes susceptibility gene variants predispose to adult-onset autoimmune diabetes. Diabetologia 57, 1859–1868 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramu, D., Perumal, V. & Paul, S. F. D. Association of common type 1 and type 2 diabetes gene variants with latent autoimmune diabetes in adults: A meta-analysis. J. Diabetes 11, 484–496 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Andersen, M. K. New insights into the genetics of latent autoimmune diabetes in adults. Curr. Diabetes Rep. https://doi.org/10.1007/s11892-020-01330-y (2020).

    Article 

    Google Scholar
     

  • Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vujkovic-Cvijin, I. et al. Host variables confound gut microbiota studies of human disease. Nature. 587, 448–454 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science. 307, 1915–1920. https://doi.org/10.1126/science.1104816 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 1979(312), 1355–1359 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-020-0433-9 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tai, N., Wong, F. S. & Wen, L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev. Endocr. Metab. Disord. 16, 55–65. https://doi.org/10.1007/s11154-015-9309-0 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Durazzo, M., Ferro, A. & Gruden, G. Gastrointestinal microbiota and type 1 diabetes mellitus: The state of art. J. Clin Med. 8, 1843 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurung, M. et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. https://doi.org/10.1016/j.ebiom.2019.11.051 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watts, T. et al. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc. Natl. Acad. Sci. USA 102, 2916–2921 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosi, E. et al. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49, 2824–2827 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Musso, G., Gambino, R. & Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu. Rev. Med. 62, 361–380 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, Y. et al. Characteristics of the gut microbiota and metabolism in patients with latent autoimmune diabetes in adults: A case-control study. Diabetes Care 44, 2738–2746 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. et al. Distinct signatures of gut microbiota and metabolites in different types of diabetes: A population-based cross-sectional study. EClinicalMedicine. 62, 102132 (2023).

  • Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527-541.e5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, G. et al. Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc. Natl. Acad. Sci. USA 114, E6166–E6175 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, Y., You, X., Mai, G., Tokuyasu, T. & Liu, C. A human gut phage catalog correlates the gut phageome with type 2 diabetes. Microbiome 6, 1–12 (2018).

    Article 

    Google Scholar
     

  • Li, J. et al. Actinomyces and alimentary tract diseases: A review of its biological functions and pathology. BioMed. Res. Int. https://doi.org/10.1155/2018/3820215 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. Alterations of gut microbiota and blood lipidome in gestational diabetes mellitus with hyperlipidemia. Front. Physiol. 10, 1015 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Del Chierico, F. et al. Gut Microbiota markers in obese adolescent and adult patients: Age-dependent differential patterns. Front. Microbiol. 9, 1210 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS One 8, e71108 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leiva-Gea, I. et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: A case-control study. Diabetes Care 41, 2385–2395 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allin, K. H. et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 61, 810–820 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Babukumar, S., Vinothkumar, V., Sankaranarayanan, C. & Srinivasan, S. Geraniol, a natural monoterpene, ameliorates hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Pharm. Biol. 55, 1442–1449 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhee, E. J. & Plutzky, J. Retinoid metabolism and diabetes mellitus. Diabetes Metab. J. 36, 167–180. https://doi.org/10.4093/dmj.2012.36.3.167 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roohbakhsh, A., Karimi, G. & Iranshahi, M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed. Pharmacother. 91, 31–42. https://doi.org/10.1016/j.biopha.2017.04.057 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thingholm, L. B. et al. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe 26, 252-264.e10 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Siljander, H., Honkanen, J. & Knip, M. Microbiome and type 1 diabetes. EBioMedicine. 46, 512–521. https://doi.org/10.1016/j.ebiom.2019.06.031 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong, X. et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional chinese herbal formula: A multicenter, randomized, open label clinical trial. mBio 9, 2392–2409 (2018).

    Article 

    Google Scholar
     

  • Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fitzgerald, C. B. et al. Probing the “dark matter” of the human gut phageome: culture assisted metagenomics enables rapid discovery and host-linking for novel bacteriophages. Front. Cell Infect. Microbiol. 11, 100 (2021).

    Article 

    Google Scholar
     

  • Garmaeva, S. et al. Stability of the human gut virome and effect of gluten-free diet. Cell Rep. 35, 109132 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomofuji, Y. et al. Whole gut virome analysis of 476 Japanese revealed a link between phage and autoimmune disease. Ann. Rheum. Dis. 81, 278–288 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, K. et al. Alterations in the gut virome in obesity and type 2 diabetes mellitus. Gastroenterology 161, 1257-1269.e13 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q. et al. Enteric phageome alterations in patients with type 2 diabetes. Front. Cell Infect. Microbiol. 10, 856 (2021).

    Article 

    Google Scholar
     

  • Alvarez-Silva, C. et al. Trans-ethnic gut microbiota signatures of type 2 diabetes in Denmark and India. Genome Med. 13, 1–13 (2021).

    Article 

    Google Scholar
     

  • Dantoft, T. M. et al. Cohort description: The Danish study of Functional Disorders. Clin. Epidemiol. 9, 127–139 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

  • Iwai, S. et al. Piphillin: Improved prediction of metagenomic content by direct inference from human microbiomes. PLoS One 11, e0166104 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Narayan, N. R. et al. Piphillin predicts metagenomic composition and dynamics from DADA2-corrected 16S rDNA sequences. BMC Genom. 21, 56 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Conceição-Neto, N. et al. Modular approach to customise sample preparation procedures for viral metagenomics: A reproducible protocol for virome analysis. Sci. Rep. 5, 16532 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Espen, L. et al. A previously undescribed highly prevalent phage identified in a danish enteric virome catalog. mSystems 6, e0038221 (2021).

  • Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, 1–10 (2009).

    Article 

    Google Scholar
     

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beller, L. et al. The virota and its transkingdom interactions in the healthy infant gut. Proc. Natl. Acad. Sci. USA 119, e2114619119 (2022).

  • Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: Mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).

  • Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • You may also like

    Today’s Diabetes News, your ultimate destination for up-to-date and insightful information on diabetes, health tips, and living a fulfilling life with diabetes. Our mission is to empower and support individuals with diabetes, their loved ones, and the wider community by providing reliable, relevant, and engaging content that fosters a healthier and happier life.

    Most Viewed Articles

    Latest Articles

    Copyright MatchingDonors.com©️ 2025 All rights reserved.

    Are you sure want to unlock this post?
    Unlock left : 0
    Are you sure want to cancel subscription?
    -
    00:00
    00:00
    Update Required Flash plugin
    -
    00:00
    00:00