Home Type 2 Continuous glucose monitoring for the routine care of type 2 diabetes mellitus

Continuous glucose monitoring for the routine care of type 2 diabetes mellitus

by Tadej Battelino
0 comments Donate
  • Davies, M. J. et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 65, 1925–1966 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Powers, M. A. et al. Diabetes self-management education and support in adults with type 2 diabetes: a consensus report of the American Diabetes Association, the Association of Diabetes Care and Education Specialists, the Academy of Nutrition and Dietetics, the American Academy of Family Physicians, the American Academy of PAs, the American Association of Nurse Practitioners, and the American Pharmacists Association. J. Acad. Nutr. Diet. 121, 773–788.e9 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Powers, M. A. 2016 Health Care & Education Presidential address: If DSME Were a Pill, Would You Prescribe It? Diabetes Care 39, 2101–2107 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Chrvala, C. A., Sherr, D. & Lipman, R. D. Diabetes self-management education for adults with type 2 diabetes mellitus: a systematic review of the effect on glycemic control. Patient Educ. Couns. 99, 926–943 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Fisher, L. et al. REDEEM: a pragmatic trial to reduce diabetes distress. Diabetes Care 36, 2551–2558 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee, S. et al. Diabetes structured self-management education programmes: a narrative review and current innovations. Lancet Diabetes Endocrinol. 6, 130–142 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Stratton, I. M. et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 321, 405–412 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, H. A. W. 10-Year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837–853 (1998).

    Article 

    Google Scholar
     

  • Khunti, K., Ceriello, A., Cos, X. & Block, C. D. Achievement of guideline targets for blood pressure, lipid, and glycaemic control in type 2 diabetes: a meta-analysis. Diabetes Res. Clin. Pr. 137, 137–148 (2018).

    Article 

    Google Scholar
     

  • American Diabetes Association Professional Practice Committee. 6. Glycemic targets: standards of medical care in diabetes—2022. Diabetes Care 45, S83–S96 (2021).

    Article 

    Google Scholar
     

  • Lind, M., Imberg, H., Coleman, R. L., Nerman, O. & Holman, R. R. Historical HbA1c values may explain the type 2 diabetes legacy effect: UKPDS 88. Diabetes Care 44, 2231–2237 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paul, S. K., Klein, K., Thorsted, B. L., Wolden, M. L. & Khunti, K. Delay in treatment intensification increases the risks of cardiovascular events in patients with type 2 diabetes. Cardiovasc. Diabetol. 14, 100 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mateo, J. F. et al. Multifactorial approach and adherence to prescribed oral medications in patients with type 2 diabetes. Int. J. Clin. Pract. 60, 422–428 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Safford, M. M. et al. Reasons for not intensifying medications: differentiating “clinical inertia” from appropriate care. J. Gen. Intern. Med. 22, 1648–1655 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khunti, K. et al. Clinical inertia in intensifying therapy among people with type 2 diabetes treated with basal insulin. Diabetes Obes. Metab. 18, 401–409 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seidu, S. et al. Therapeutic inertia amongst general practitioners with interest in diabetes. Prim. Care Diabetes 12, 87–91 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Khunti, K. & Davies, M. J. Clinical inertia – time to reappraise the terminology? Prim. Care Diabetes 11, 105–106 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Doyle-Delgado, K., Chamberlain, J. J., Shubrook, J. H., Skolnik, N. & Trujillo, J. Pharmacologic approaches to glycemic treatment of type 2 diabetes: synopsis of the 2020 American Diabetes Association’s Standards of Medical Care in Diabetes Clinical Guideline. Ann. Intern. Med. 173, 813–821 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • National Institute for Health and Care Excellence (NICE). Type 2 diabetes in adults: management. NICE guideline [NG28]. nice.org.uk www.nice.org.uk/guidance/ng28/resources/type-2-diabetes-in-adults-management-pdf-1837338615493 (2022).

  • Khunti, K. et al. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: a systematic review. Diabetes Obes. Metab. 20, 427–437 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kaewbut, P. et al. Time to treatment intensification to reduce diabetes-related complications: a post hoc study. Healthcare 10, 1673 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bain, S. C., Hansen, B. B., Hunt, B., Chubb, B. & Valentine, W. J. Evaluating the burden of poor glycemic control associated with therapeutic inertia in patients with type 2 diabetes in the UK. J. Med. Econ. 23, 98–105 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Tsotra, F. et al. The societal impact of early intensified treatment in patients with type 2 diabetes mellitus. J. Comp. Eff. Res. 11, 1185–1199 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward, J. E. F., Stetson, B. A. & Mokshagundam, S. P. L. Patient perspectives on self-monitoring of blood glucose: perceived recommendations, behaviors and barriers in a clinic sample of adults with type 2 diabetes. J. Diabetes Metab. Disord. 14, 43 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polonsky, W. H., Fisher, L., Hessler, D. & Edelman, S. V. What is so tough about self‐monitoring of blood glucose? Perceived obstacles among patients with type 2 diabetes. Diabet. Med. 31, 40–46 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monnier, L., Colette, C., Dunseath, G. J. & Owens, D. R. The loss of postprandial glycemic control precedes stepwise deterioration of fasting with worsening diabetes. Diabetes Care 30, 263–269 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Monnier, L., Colette, C., Dejager, S. & Owens, D. The dawn phenomenon in type 2 diabetes: how to assess it in clinical practice? Diabetes Metab. 41, 132–137 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monnier, L., Colette, C. & Owens, D. R. Integrating glycaemic variability in the glycaemic disorders of type 2 diabetes: a move towards a unified glucose tetrad concept. Diabetes Metab. Res. Rev. 25, 393–402 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monnier, L., Colette, C. & Owens, D. Three key indices in clinical practice to better comprehend the postprandial and basal glucose contributions in type 2 diabetes. Diabetes Technol. Ther. 24, 853–855 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Monnier, L., Colette, C., Dejager, S. & Owens, D. Magnitude of the dawn phenomenon and its impact on the overall glucose exposure in type 2 diabetes. Diabetes Care 36, 4057–4062 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monnier, L., Colette, C. & Owens, D. Postprandial and basal glucose in type 2 diabetes: assessment and respective impacts. Diabetes Technol. Ther. 13, S25–S32 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Monnier, L., Colette, C., Dejager, S. & Owens, D. Residual dysglycemia when at target HbA1c of 7% (53 mmol/mol) in persons with type 2 diabetes. Diabetes Res. Clin. Pr. 104, 370–375 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Monnier, L., Lapinski, H. & Colette, C. Contriutions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients. Diabetes Care 26, 881–885 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Riddle, M., Umpierrez, G., DiGenio, A., Zhou, R. & Rosenstock, J. Contributions of basal and postprandial hyperglycemia over a wide range of A1C levels before and after treatment intensification in type 2 diabetes. Diabetes Care 34, 2508–2514 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riddle, M. C. The treat-to-target trial and related studies. Endocr. Pract. 12, 71–79 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Monnier, L., Wojtusciszyn, A., Colette, C. & Owens, D. The contribution of glucose variability to asymptomatic hypoglycemia in persons with type 2 diabetes. Diabetes Technol. Ther. 13, 813–818 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uemura, F., Okada, Y., Torimoto, K. & Tanaka, Y. Relation between hypoglycemia and glycemic variability in type 2 diabetes patients with insulin therapy: a study based on continuous glucose monitoring. Diabetes Technol. Ther. 20, 140–146 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uemura, F. et al. Risk factor analysis for type 2 diabetes patients about hypoglycemia using continuous glucose monitoring: results from a prospective observational study. Diabetes Technol. Ther. 24, 435–445 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Battelino, T. et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care 42, 1593–1603 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monnier, L., Colette, C. & Owens, D. Below which threshold of glycemic variability is there a minimal risk of hypoglycemia in people with type 2 diabetes? Diabetes Technol. Ther. 24, 453–454 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tang, X. et al. Glycemic variability evaluated by continuous glucose monitoring system is associated with the 10-y cardiovascular risk of diabetic patients with well-controlled HbA1c. Clin. Chim. Acta 461, 146–150 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, G. et al. Impact of admission glycemic variability, glucose, and glycosylated hemoglobin on major adverse cardiac events after acute myocardial infarction. Diabetes Care 36, 1026–1032 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerbaud, E. et al. Glycemic variability is a powerful independent predictive factor of midterm major adverse cardiac events in patients with diabetes with acute coronary syndrome. Diabetes Care 42, 674–681 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Nusca, A. et al. Glycemic variability assessed by continuous glucose monitoring and short-term outcome in diabetic patients undergoing percutaneous coronary intervention: an observational pilot study. J. Diabetes Res. 2015, 250201 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. et al. Glycemic variability assessed by continuous glucose monitoring and the risk of diabetic retinopathy in latent autoimmune diabetes of the adult and type 2 diabetes. J. Diabetes Invest. 10, 753–759 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, F. et al. The relationship between glycemic variability and diabetic peripheral neuropathy in type 2 diabetes with well-controlled HbA1c. Diabetol. Metab. Syndr. 6, 139 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, J. et al. Association of glycemic variability assessed by continuous glucose monitoring with subclinical diabetic polyneuropathy in type 2 diabetes patients. J. Diabetes Invest. 13, 328–335 (2021).

    Article 

    Google Scholar
     

  • Hu, Y. et al. Association of glycaemic variability evaluated by continuous glucose monitoring with diabetic peripheral neuropathy in type 2 diabetic patients. Endocrine 60, 292–300 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gad, H. et al. Cardiovascular autonomic neuropathy is associated with increased glycemic variability driven by hyperglycemia rather than hypoglycemia in patients with diabetes. Diabetes Res. Clin. Pract. 200, 110670 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choudhary, P. et al. The challenge of sustainable access to telemonitoring tools for people with diabetes in Europe: lessons from COVID-19 and beyond. Diabetes Ther. 12, 2311–2327 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danne, T. et al. Telemonitoring, telemedicine and time in range during the pandemic: paradigm change for diabetes risk management in the post-COVID future. Diabetes Ther. 12, 2289–2310 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edelman, S. V., Argento, N. B., Pettus, J. & Hirsch, I. B. Clinical implications of real-time and intermittently scanned continuous glucose monitoring. Diabetes Care 41, 2265–2274 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck, R. W. et al. Continuous glucose monitoring versus usual care in patients with type 2 diabetes receiving multiple daily insulin injections. Ann. Intern. Med. 167, 365–374 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Yaron, M. et al. Effect of flash glucose monitoring technology on glycemic control and treatment satisfaction in patients with type 2 diabetes. Diabetes Care 43, 1178–1184 (2019).

    Article 

    Google Scholar
     

  • Kröger, J., Fasching, P. & Hanaire, H. Three European retrospective real-world chart review studies to determine the effectiveness of flash glucose monitoring on HbA1c in adults with type 2 diabetes. Diabetes Ther. 11, 279–291 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Haak, T. et al. Flash glucose-sensing technology as a replacement for blood glucose monitoring for the management of insulin-treated type 2 diabetes: a multicenter, open-label randomized controlled trial. Diabetes Ther. 8, 55–73 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martens, T. et al. Effect of continuous glucose monitoring on glycemic control in patients with type 2 diabetes treated with basal insulin. JAMA 325, 2262–2272 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carlson, A. L. et al. Flash glucose monitoring in type 2 diabetes managed with basal insulin in the USA: a retrospective real-world chart review study and meta-analysis. BMJ Open Diabetes Res. Care 10, e002590 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elliott, T. et al. The impact of flash glucose monitoring on glycated hemoglobin in type 2 diabetes managed with basal insulin in Canada: a retrospective real-world chart review study. Diabetes Vasc. Dis. Res. 18, 14791641211021374 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wright, E. E., Kerr, M. S. D., Reyes, I. J., Nabutovsky, Y. & Miller, E. Use of flash continuous glucose monitoring is associated with A1C reduction in people with type 2 diabetes treated with basal insulin or noninsulin therapy. Diabetes Spectr. 34, 184–189 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wada, E. et al. Flash glucose monitoring helps achieve better glycemic control than conventional self-monitoring of blood glucose in non-insulin-treated type 2 diabetes: a randomized controlled trial. BMJ Open. Diabetes Res. Care 8, e001115 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, D. J. et al. Minimizing glucose excursions (GEM) with continuous glucose monitoring in type 2 diabetes: a randomized clinical trial. J. Endocr. Soc. 4, bvaa118 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aleppo, G. et al. The effect of discontinuing continuous glucose monitoring in adults with type 2 diabetes treated with basal insulin. Diabetes Care 44, 2729–2737 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerci, B. et al. Important decrease in hospitalizations for acute diabetes events following FreeStyle Libre® system initiation in people with type 2 diabetes on basal insulin therapy in France. Diabetes Technol. Ther. 25, 20–30 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, E., Kerr, M. S. D., Roberts, G. J., Nabutovsky, Y. & Wright, E. Flash CGM associated with event reduction in nonintensive diabetes therapy. Am. J. Manag. Care 27, e372–e377 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Harris, S. & Levrat-Guillen, F. Use of the FreeStyle Libre® system in diabetes treatment for people with T2D: results from a retrospective cohort study using Canadian Private Payer Claims Database. Diabetes Obes. Metab. 25, 1704–1713 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Reach, G., Pechtner, V., Gentilella, R., Corcos, A. & Ceriello, A. Clinical inertia and its impact on treatment intensification in people with type 2 diabetes mellitus. Diabetes Metab. 43, 501–511 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Giugliano, D., Maiorino, M. I., Bellastella, G. & Esposito, K. Clinical inertia, reverse clinical inertia, and medication non-adherence in type 2 diabetes. J. Endocrinol. Invest. 42, 495–503 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell‐Jones, D., Pouwer, F. & Khunti, K. Identification of barriers to insulin therapy and approaches to overcoming them. Diabetes Obes. Metab. 20, 488–496 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Polonsky, W. H., Fisher, L., Guzman, S., Villa-Caballero, L. & Edelman, S. V. Psychological insulin resistance in patients with type 2 diabetes. Diabetes Care 28, 2543–2545 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Peyrot, M., Barnett, A. H., Meneghini, L. F. & Schumm‐Draeger, P. ‐M. Insulin adherence behaviours and barriers in the multinational global attitudes of patients and physicians in insulin therapy study. Diabet. Med. 29, 682–689 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The ACCORD Study Group Long-term effects of intensive glucose lowering on cardiovascular outcomes. N. Engl. J. Med. 364, 818–828 (2011).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zoungas, S. et al. Severe hypoglycemia and risks of vascular events and death. N. Engl. J. Med. 363, 1410–1418 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pearson, S. M. et al. Reduction in cardiovascular mortality following severe hypoglycemia in individuals with type 2 diabetes: the role of a pragmatic and structured intervention. Cardiovasc. Diabetol. 20, 18 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Langendam, M. et al. Continuous glucose monitoring systems for type 1 diabetes mellitus. Cochrane Database Syst. Rev. 2012, CD008101 (2012).

    PubMed Central 

    Google Scholar
     

  • Diabetes Research in Children Network (DirecNet) Study Group. Youth and parent satisfaction with clinical use of the GlucoWatch G2 biographer in the management of pediatric type 1 diabetes. Diabetes Care 28, 1929–1935 (2005).

    Article 

    Google Scholar
     

  • Lind, M. et al. Continuous glucose monitoring vs conventional therapy for glycemic control in adults with type 1 diabetes treated with multiple daily insulin injections: the GOLD randomized clinical trial. JAMA 317, 379–387 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polonsky, W. H., Soriano, E. C. & Fortmann, A. L. The role of retrospective data review in the personal use of real-time continuous glucose monitoring: perceived impact on quality of life and health outcomes. Diabetes Technol. Ther. 24, 492–501 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Gilbert, T. R., Noar, A., Blalock, O. & Polonsky, W. H. Change in hemoglobin A1c and quality of life with real-time continuous glucose monitoring use by people with insulin-treated diabetes in the Landmark study. Diabetes Technol. Ther. 23, S35–S39 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chesser, H., Srinivasan, S., Puckett, C., Gitelman, S. E. & Wong, J. C. Real-time continuous glucose monitoring in adolescents and young adults with type 2 diabetes can improve quality of life. J. Diabetes Sci. Technol. 23, 193229682211398 (2022).

    Article 

    Google Scholar
     

  • Volčanšek, Š., Lunder, M. & Janež, A. Acceptability of continuous glucose monitoring in elderly diabetes patients using multiple daily insulin injections. Diabetes Technol. Ther. 21, 566–574 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Polonsky, W. H., Peters, A. L. & Hessler, D. The impact of real-time continuous glucose monitoring in patients 65 years and older. J. Diabetes Sci. Technol. 10, 892–897 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nathan, D. M. et al. Diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: advances and contributions. Diabetes 62, 3976–3986 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care 41, 2370–2376 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. Association of time in range, as assessed by continuous glucose monitoring, with painful diabetic polyneuropathy. J. Diabetes Invest. 12, 828–836 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, F. et al. TIR generated by continuous glucose monitoring is associated with peripheral nerve function in type 2 diabetes. Diabetes Res. Clin. Pract. 166, 108289 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Heide, F. C. T. et al. (Pre)diabetes, glycemia, and daily glucose variability are associated with retinal nerve fiber layer thickness in the Maastricht study. Sci. Rep. 12, 17750 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gad, H. et al. Continuous glucose monitoring reveals a novel association between duration and severity of hypoglycemia, and small nerve fiber injury in patients with diabetes. Endocr. Connect. 11, e220352 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, J. et al. Time in range is associated with carotid intima-media thickness in type 2 diabetes. Diabetes Technol. Ther. 22, 72–78 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Time in range, assessed with continuous glucose monitoring, is associated with brachial-ankle pulse wave velocity in type 2 diabetes: a retrospective single-center analysis. Front. Endocrinol. 13, 1014568 (2022).

    Article 

    Google Scholar
     

  • Lu, J. et al. Time in range in relation to all-cause and cardiovascular mortality in patients with type 2 diabetes: a prospective cohort study. Diabetes Care 44, 549–555 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Association of time in range levels with lower extremity arterial disease in patients with type 2 diabetes. Diabetes Metab. Syndr. Clin. Res. Rev. 14, 2081–2085 (2020).

    Article 

    Google Scholar
     

  • Xie, P. et al. Time in range in relation to amputation and all‐cause mortality in hospitalised patients with diabetic foot ulcers. Diabetes Metab. Res. Rev. 38, e3498 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mayeda, L. et al. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease. BMJ Open Diabetes Res. Care 8, e000991 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, Q.-Y. et al. Continuous glucose monitoring defined time-in-range is associated with sudomotor dysfunction in type 2 diabetes. World J. Diabetes 11, 489–500 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. Y. et al. The association between continuous glucose monitoring-derived metrics and cardiovascular autonomic neuropathy in outpatients with type 2 diabetes. Diabetes Technol. Ther. 23, 434–442 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Q. et al. Time in range, as a novel metric of glycemic control, is reversely associated with presence of diabetic cardiovascular autonomic neuropathy independent of HbA1c in Chinese type 2 diabetes. J. Diabetes Res. 2020, 5817074 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo, J. H. et al. Association between continuous glucose monitoring-derived time in range, other core metrics, and albuminuria in type 2 diabetes. Diabetes Technol. Ther. 22, 768–776 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, R. et al. A deep learning nomogram of continuous glucose monitoring data for the risk prediction of diabetic retinopathy in type 2 diabetes. Phys. Eng. Sci. Med. 46, 813–825 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ahlqvist, E. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 6, 361–369 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hall, H. et al. Glucotypes reveal new patterns of glucose dysregulation. PLoS Biol. 16, e2005143 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schön, M. et al. Analysis of type 2 diabetes heterogeneity with a tree-like representation: insights from the prospective German Diabetes Study and the LURIC cohort. Lancet Diabetes Endocrinol. 12, 119–131 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Nair, A. T. N. et al. Heterogeneity in phenotype, disease progression and drug response in type 2 diabetes. Nat. Med. 28, 982–988 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirst, J. A., Farmer, A. J., Dyar, A., Lung, T. W. C. & Stevens, R. J. Estimating the effect of sulfonylurea on HbA1c in diabetes: a systematic review and meta-analysis. Diabetologia 56, 973–984 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmer, S. C. et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA 316, 313–324 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uemura, F., Okada, Y., Torimoto, K. & Tanaka, Y. Enlarged glycemic variability in sulfonylurea-treated well-controlled type 2 diabetics identified using continuous glucose monitoring. Sci. Rep. 11, 4875 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buse, J. B. et al. 2019 update to: management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 63, 221–228 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Grace, T. & Salyer, J. Use of real-time continuous glucose monitoring improves glycemic control and other clinical outcomes in type 2 diabetes patients treated with less intensive therapy. Diabetes Technol. Ther. 24, 26–31 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aronson, R. et al. Impact of flash glucose monitoring in people with type 2 diabetes inadequately controlled with non‐insulin antihyperglycaemic therapy (IMMEDIATE): a randomized controlled trial. Diabetes Obes. Metab. 25, 1024–1031 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Echouffo-Tcheugui, J. B. et al. Visit-to-visit glycemic variability and risks of cardiovascular events and all-cause mortality: the ALLHAT study. Diabetes Care 42, dc181430 (2019).

    Article 

    Google Scholar
     

  • Nyiraty, S. et al. Cardiovascular autonomic neuropathy and glucose variability in patients with type 1 diabetes: is there an association? Front. Endocrinol. 9, 174 (2018).

    Article 

    Google Scholar
     

  • Wakasugi, S. et al. Associations between continuous glucose monitoring-derived metrics and diabetic retinopathy and albuminuria in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 9, e001923 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farhan, H. A., Bukhari, K., Grewal, N., Devarasetty, S. & Munir, K. Use of continuous glucose monitor as a motivational device for lifestyle modifications to improve glycaemic control in patients with type 2 diabetes treated with non-insulin therapies. BMJ Case Rep. 15, e248579 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Schubert-Olesen, O., Kröger, J., Siegmund, T., Thurm, U. & Halle, M. Continuous glucose monitoring and physical activity. Int. J. Environ. Res. Public Health 19, 12296 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ziegler, R. et al. Intermittent use of continuous glucose monitoring: expanding the clinical value of CGM. J. Diabetes Sci. Technol. 15, 684–694 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • American Diabetes Association Professional Practice Committee. 7. Diabetes technology: standards of medical care in diabetes—2022. Diabetes Care 45, S97–S112 (2021).

    Article 

    Google Scholar
     

  • Taylor, P. J., Thompson, C. H. & Brinkworth, G. D. Effectiveness and acceptability of continuous glucose monitoring for type 2 diabetes management: a narrative review. J. Diabetes Invest. 9, 713–725 (2018).

    Article 

    Google Scholar
     

  • Moon, S. J. et al. Efficacy of intermittent short‐term use of a real‐time continuous glucose monitoring system in non‐insulin-treated patients with type 2 diabetes: a randomized controlled trial. Diabetes Obes. Metab. 25, 110–120 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Price, D. A., Deng, Q., Kipnes, M. & Beck, S. E. Episodic real-time CGM use in adults with type 2 diabetes: results of a pilot randomized controlled trial. Diabetes Ther. 12, 2089–2099 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vigersky, R. A., Fonda, S. J., Chellappa, M., Walker, M. S. & Ehrhardt, N. M. Short- and long-term effects of real-time continuous glucose monitoring in patients with type 2 diabetes. Diabetes Care 35, 32–38 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monnier, L., Colette, C., Bonnet, F., Renard, E. & Owens, D. HbA1c variability and diabetes complications: assessment and implications. Diabetes Metab. 49, 101399 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Klupa, T. et al. Expanding the role of continuous glucose monitoring in modern diabetes care beyond type 1 disease. Diabetes Ther. 14, 1241–1266 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen, N. A., Fain, J. A., Braun, B. & Chipkin, S. R. Continuous glucose monitoring counseling improves physical activity behaviors of individuals with type 2 diabetes: a randomized clinical trial. Diabetes Res. Clin. Pract. 80, 371–379 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gehlaut, R. R., Dogbey, G. Y., Schwartz, F. L., Marling, C. R. & Shubrook, J. H. Hypoglycemia in type 2 diabetes – more common than you think. J. Diabetes Sci. Technol. 9, 999–1005 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eckel, R. H. et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care 34, 1424–1430 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heise, T. et al. Tirzepatide reduces appetite, energy intake, and fat mass in people with type 2 diabetes. Diabetes Care 46, 998–1004 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wharton, S. et al. Two‐year effect of semaglutide 2.4 mg on control of eating in adults with overweight/obesity: STEP 5. Obesity 31, 703–715 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouillet, B. et al. Frequent and severe hypoglycaemia detected with continuous glucose monitoring in older institutionalised patients with diabetes. Age Ageing 50, 2088–2093 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Roussel, R. et al. Persistence with basal insulin and frequency of hypoglycemia requiring hospitalization in patients with type 2 diabetes. Diabetes Ther. 11, 1861–1872 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Idris, I. et al. Associated factors that influenced persistence with basal analog insulin therapy among people with type 2 diabetes: an exploratory analysis from a UK real-world sample. Prim. Care Diabetes 13, 106–112 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Fonda, S. J. et al. The cost-effectiveness of real-time continuous glucose monitoring (RT-CGM) in type 2 diabetes. J. Diabetes Sci. Technol. 10, 898–904 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roussel, R. et al. Important drop in the rate of acute diabetes complications in people with type 1 or type 2 diabetes after initiation of flash glucose monitoring in France: the RELIEF study. Diabetes Care 44, 1368–1376 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergenstal, R. M. et al. Flash CGM is associated with reduced diabetes events and hospitalizations in insulin-treated type 2 diabetes. J. Endocr. Soc. 5, bvab013 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Riveline, J.-P. et al. Reduced rate of acute diabetes events with flash glucose monitoring is sustained for two-years after initiation: extended outcomes from the RELIEF study. Diabetes Technol. Ther. 24, 611–618 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Commission Nationale d’Evaluation des Dispositifs Medicaux et des Technologies de Sante. FreeStyle Libre 2, Système flash d’autosurveillance du glucose [French]. Haute Autorité de Santé www.has-sante.fr/jcms/p_3219919/fr/freestyle-libre-2-avis-de-la-cnedimts-du-20/10/2020 (2020).

  • Jendle, J. et al. Cost-effectiveness of the FreeStyle Libre® system versus blood glucose self-monitoring in individuals with type 2 diabetes on insulin treatment in Sweden. Diabetes Ther. 12, 3137–3152 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ajjan, R., Bilir, S. P., Hellmund, R. & Souto, D. Cost-effectiveness analysis of flash glucose monitoring system for people with type 2 diabetes receiving intensive insulin treatment. Diabetes Ther. 13, 1933–1945 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, N. H. et al. IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, S., Bailey, R., Calhoun, P. & Beck, R. W. Effectiveness of continuous glucose monitoring in older adults with type 2 diabetes treated with basal insulin. Diabetes Technol. Ther. 24, 299–306 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerci, B. et al. Reduced acute diabetes events after FreeStyle Libre® system initiation in people 65 years or older with type 2 diabetes on intensive insulin therapy in France. Diabetes Technol. Ther. 25, 384–394 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Munshi, M. N. et al. Frequent hypoglycemia among elderly patients with poor glycemic control. Arch. Intern. Med. 171, 362–364 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lipska, K. J. et al. HbA1c and risk of severe hypoglycemia in type 2 diabetes. Diabetes Care 36, 3535–3542 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meneilly, G. S. & Tessier, D. Diabetes in the elderly. Diabet. Med. 12, 949–960 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meneilly, G. S. & Tessier, D. Diabetes in elderly adults. J. Gerontol. Ser. 56, M5–M13 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Schütt, M. et al. Multiple complications and frequent severe hypoglycaemia in ‘elderly’ and ‘old’ patients with type 1 diabetes. Diabet. Med. 29, e176–e179 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Wallander, M., Axelsson, K. F., Nilsson, A. G., Lundh, D. & Lorentzon, M. Type 2 diabetes and risk of hip fractures and non‐skeletal fall injuries in the elderly: a study from the Fractures and Fall Injuries in the Elderly cohort (FRAILCO). J. Bone Miner. Res. 32, 449–460 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mattishent, K. et al. The effects of hypoglycaemia and dementia on cardiovascular events, falls and fractures and all‐cause mortality in older individuals: a retrospective cohort study. Diabetes Obes. Metab. 21, 2076–2085 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mattishent, K. & Loke, Y. K. Is avoidance of hypoglycaemia a better target than HbA1C in older people with diabetes? Br. J. Clin. Pharmacol. 87, 9–11 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kosjerina, V. et al. Discontinuation of diabetes medication in the 10 years before death in Denmark: a register-based study. Lancet Health Longev. 2, e561–e570 (2021).

    Article 

    Google Scholar
     

  • Selvin, E. et al. Glucose patterns in very old adults: a pilot study in a community-based population. Diabetes Technol. Ther. 23, 737–744 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romano, S., Figueira, D., Teixeira, I. & Perelman, J. Deprescribing interventions among community-dwelling older adults: a systematic review of economic evaluations. Pharmacoeconomics 40, 269–295 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Nordyke, R. J., Appelbaum, K. & Berman, M. A. Estimating the impact of novel digital therapeutics in type 2 diabetes and hypertension: health economic analysis. J. Med. Internet Res. 21, e15814 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dabelea, D. et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA 311, 1778–1786 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manfredo, J. et al. Short-term use of CGM in youth onset type 2 diabetes is associated with behavioral modifications. Front. Endocrinol. 14, 1182260 (2023).

    Article 

    Google Scholar
     

  • Chang, N., Barber, R. O. L. B., Alula, J. L., Durazo-Arvizu, R. & Chao, L. C. Continuous glucose monitoring versus standard of care in adolescents with type 2 diabetes: a pilot randomized cross-over trial. J. Diabetes Sci. Technol. 17, 1419–1420 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Seidu, S. et al. 2022 update to the position statement by Primary Care Diabetes Europe: a disease state approach to the pharmacological management of type 2 diabetes in primary care. Prim. Care Diabetes 16, 223–244 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seidu, S. et al. A disease state approach to the pharmacological management of type 2 diabetes in primary care: a position statement by Primary Care Diabetes Europe. Prim. Care Diabetes 15, 31–51 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Battelino, T. et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. 11, 42–57 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Manickam, P. et al. Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors 12, 562 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Assaf, S. A., Zelko, R. & Hanko, B. The effect of interventions led by community pharmacists in primary care for adults with type 2 diabetes mellitus on therapeutic adherence and HbA1c levels: a systematic review. Int. J. Environ. Res. Public Health 19, 6188 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coutureau, C., Slimano, F., Mongaret, C. & Kanagaratnam, L. Impact of pharmacists-led interventions in primary care for adults with type 2 diabetes on HbA1c levels: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health 19, 3156 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Majjouti, K. et al. Family doctors’ attitudes toward peer support programs for type 2 diabetes and/or coronary artery disease: an exploratory survey among German practitioners. BMC Prim. Care 23, 220 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bommer, C. et al. Global economic burden of diabetes in adults: projections from 2015 to 2030. Diabetes Care 41, 963–970 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Parker, E. D. et al. Economic costs of diabetes in the U.S. in 2022. Diabetes Care 47, 26–43 (2023).

    Article 

    Google Scholar
     

  • Hex, N., Bartlett, C., Wright, D., Taylor, M. & Varley, D. Estimating the current and future costs of type 1 and type 2 diabetes in the UK, including direct health costs and indirect societal and productivity costs. Diabet. Med. 29, 855–862 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bansal, M. et al. Impact of reducing glycated hemoglobin on healthcare costs among a population with uncontrolled diabetes. Appl. Health Econ. Health Policy 16, 675–684 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Meng, J. et al. Effect of diabetes treatment-related attributes on costs to type 2 diabetes patients in a real-world population. J. Manag. Care Spéc. Pharm. 23, 446–452 (2017).

    PubMed 

    Google Scholar
     

  • Stedman, M. et al. Cost of hospital treatment of type 1 diabetes (T1DM) and type 2 diabetes (T2DM) compared to the non-diabetes population: a detailed economic evaluation. BMJ Open 10, e033231 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bilir, S. P. et al. The cost-effectiveness of a flash glucose monitoring system for management of patients with type 2 diabetes receiving intensive insulin treatment in Sweden. Eur. Endocrinol. 14, 80 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bahia, L. et al. Cost-effectiveness of continuous glucose monitoring with FreeStyle Libre® in Brazilian insulin-treated patients with types 1 and 2 diabetes mellitus. Diabetol. Metab. Syndr. 15, 242 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isitt, J. J. et al. Cost-effectiveness of a real-time continuous glucose monitoring system versus self-monitoring of blood glucose in people with type 2 diabetes on insulin therapy in the UK. Diabetes Ther. 13, 1875–1890 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshannaq, H. et al. Cost-utility of real-time continuous glucose monitoring versus self-monitoring of blood glucose in people with insulin-treated Type 2 diabetes in Canada. J. Comp. Eff. Res. 12, e230075 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alshannaq, H. et al. Cost-utility of real-time continuous glucose monitoring versus self-monitoring of blood glucose in people with insulin-treated type II diabetes in France. J. Comp. Eff. Res. 13, e230174 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sierra, J. A. et al. Clinical and economic benefits of professional CGM among people with type 2 diabetes in the United States: analysis of claims and lab data. J. Med. Econ. 21, 225–230 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Isaacson, B. et al. Demonstrating the clinical impact of continuous glucose monitoring within an integrated healthcare delivery system. J. Diabetes Sci. Technol. 16, 383–389 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Harris, S. et al. Person-centered, outcomes-driven treatment: a new paradigm for type 2 diabetes in primary care (American Diabetes Association, 2020).

  • Evans, M. et al. Defining the role of SGLT2 inhibitors in primary care: time to think differently. Diabetes Ther. 13, 889–911 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernando, K., Bain, S. C., Holmes, P., Jones, P. N. & Patel, D. C. Glucagon-like peptide 1 receptor agonist usage in type 2 diabetes in primary care for the UK and beyond: a narrative review. Diabetes Ther. 12, 2267–2288 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giunti, G., Guisado-Fernandez, E., Belani, H. & Lacalle-Remigio, J. R. Mapping the access of future doctors to health information technologies training in the European Union: cross-sectional descriptive study. J. Med. Internet Res. 21, e14086 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lupiáñez-Villanueva, F., Folkvord, F. & Fauli, C. Benchmarking deployment of eHealth among general practitioners. European Commission ec.europa.eu/newsroom/dae/document.cfm?doc_id=60210 (2018).

  • Silva-Tinoco, R. & Torre-Saldaña, Vdela The imperious need for telemedicine for the care of diabetes during the COVID-19 pandemic. A comprehensive approach study. Gac. Med. Mex. 157, 309–312 (2021).

    PubMed 

    Google Scholar
     

  • Pogorzelska, K., Marcinowicz, L. & Chlabicz, S. A qualitative study of primary care physicians’ experiences with telemedicine during the COVID-19 pandemic in North-Eastern Poland. Int. J. Environ. Res. Public Health 20, 1963 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poitras, M.-E. et al. Chronic conditions patient’s perception of post-COVID-19 pandemic teleconsulting continuation in primary care clinics: a qualitative descriptive study. BMJ Open. 12, e066871 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Rubio-Valera, M. et al. Barriers and facilitators for the implementation of primary prevention and health promotion activities in primary care: a synthesis through meta-ethnography. PLoS ONE 9, e89554 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mackert, M., Mabry-Flynn, A., Champlin, S., Donovan, E. E. & Pounders, K. Health literacy and health information technology adoption: the potential for a new digital divide. J. Med. Internet Res. 18, e264 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dunn, P. & Hazzard, E. Technology approaches to digital health literacy. Int. J. Cardiol. 293, 294–296 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Polonsky, W. H. et al. Impact of participation in a virtual diabetes clinic on diabetes-related distress in individuals with type 2 diabetes. Clin. Diabetes 38, 357–362 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. Y. et al. Using telemedicine to support care for people with type 2 diabetes mellitus: a qualitative analysis of patients’ perspectives. BMJ Open. 9, e026575 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buysse, H., Coremans, P., Pouwer, F. & Ruige, J. Sustainable improvement of HbA1c and satisfaction with diabetes care after adding telemedicine in patients on adaptable insulin regimens: results of the TeleDiabetes randomized controlled trial. Health Inf. J. 26, 628–641 (2020).

    Article 

    Google Scholar
     

  • Rodríguez-Fortúnez, P. et al. Cross-sectional study about the use of telemedicine for type 2 diabetes mellitus management in Spain: patient’s perspective. The EnREDa2 Study. BMJ Open. 9, e028467 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torbjørnsen, A., Ribu, L., Rønnevig, M., Grøttland, A. & Helseth, S. Users’ acceptability of a mobile application for persons with type 2 diabetes: a qualitative study. BMC Health Serv. Res. 19, 641 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernández-Rodríguez, R. et al. Are e-Health interventions effective in reducing diabetes-related distress and depression in patients with type 2 diabetes? A systematic review with meta-analysis. Telemed. e-Health https://doi.org/10.1089/tmj.2023.0374 (2023).

    Article 

    Google Scholar
     

  • Yoo, H. J. et al. Use of a real time continuous glucose monitoring system as a motivational device for poorly controlled type 2 diabetes. Diabetes Res. Clin. Pract. 82, 73–79 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karter, A. J., Parker, M. M., Moffet, H. H., Gilliam, L. K. & Dlott, R. Association of real-time continuous glucose monitoring with glycemic control and acute metabolic events among patients with insulin-treated diabetes. JAMA 325, 2273–2284 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ajjan, R. A. et al. Multicenter randomized trial of intermittently scanned continuous glucose monitoring versus self-monitoring of blood glucose in individuals with type 2 diabetes and recent-onset acute myocardial infarction: results of the LIBERATES trial. Diabetes Care 46, 441–449 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

    Article 

    Google Scholar
     

  • Danne, T. et al. International consensus on use of continuous glucose monitoring. Diabetes Care 40, 1631–1640 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agiostratidou, G. et al. Standardizing clinically meaningful outcome measures beyond HbA1c for type 1 diabetes: a consensus report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endocrine Society, JDRF International, The Leona M. and Harry B. Helmsley Charitable Trust, the Pediatric Endocrine Society, and the T1D Exchange. Diabetes Care 40, 1622–1630 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beck, R. W. et al. The relationships between time in range, hyperglycemia metrics, and HbA1c. J. Diabetes Sci. Technol. 13, 614–626 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillip, M. et al. The digital/virtual diabetes clinic: the future is now – recommendations from an international panel on diabetes digital technologies introduction. Diabetes Technol. Ther. 23, 146–154 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Danne, T. & Limbert, C. COVID-19, type 1 diabetes, and technology: why paediatric patients are leading the way. Lancet Diabetes Endocrinol. 8, 465–467 (2020).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Majithia, A. R. et al. Glycemic outcomes in adults with type 2 diabetes participating in a continuous glucose monitor-driven virtual diabetes clinic: prospective trial. J. Med. Internet Res. 22, e21778 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergenstal, R. M. et al. Remote application and use of real-time continuous glucose monitoring by adults with type 2 diabetes in a virtual diabetes clinic. Diabetes Technol. Ther. 23, 128–132 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wu, C. C., Wu, K. C., José, A. S. & Novin, N. Virtual endocrinology care emphasizing data-driven insights and continuous engagement and its impact on glycemic outcomes in patients with uncontrolled diabetes: a real-world retrospective case series. JMIR Diabetes 7, e30626 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khunti, K. et al. Diabetes registries and high-quality diabetes care. Lancet Diabetes Endocrinol. 11, 70–72 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • European Commission. Commission Recommendation on a European Electronic Health Record exchange format. European Commission ec.europa.eu/newsroom/dae/document.cfm?doc_id=57253 (2019).

  • Font, A. G. Work begins on developing the mConnecta Mobility Platform. TIC Salut Social ticsalutsocial.cat/en/noticia/work-begins-on-developing-the-mconnecta-mobility-platform/ (2019).

  • You may also like

    Today’s Diabetes News, your ultimate destination for up-to-date and insightful information on diabetes, health tips, and living a fulfilling life with diabetes. Our mission is to empower and support individuals with diabetes, their loved ones, and the wider community by providing reliable, relevant, and engaging content that fosters a healthier and happier life.

    Most Viewed Articles

    Latest Articles

    Copyright MatchingDonors.com©️ 2025 All rights reserved.

    Are you sure want to unlock this post?
    Unlock left : 0
    Are you sure want to cancel subscription?
    -
    00:00
    00:00
    Update Required Flash plugin
    -
    00:00
    00:00