Home Type 1 Dynamic associations between glucose and ecological momentary cognition in Type 1 Diabetes

Dynamic associations between glucose and ecological momentary cognition in Type 1 Diabetes

by E. D. Beck
0 comments
  • Van Belle, T. L., Coppieters, K. T. & Von Herrath, M. G. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol. Rev. 91, 79–118 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Ozougwu, J. C., Obimba, K. C., Belonwu, C. D. & Unakalamba, C. B. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol. 4, 46–57 (2013).

    Article 

    Google Scholar
     

  • Kumar, N. et al. Mild cognitive impairment in young type 1 diabetes mellitus patients and correlation with diabetes control, lipid profile, and high-sensitivity C-reactive protein. Indian J. Endocrinol. Metab. 22, 780 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chaytor, N. S. et al. Clinically significant cognitive impairment in older adults with type 1 diabetes. J. Diabetes Complications 33, 91–97 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Shalimova, A. et al. Cognitive dysfunction in type 1 diabetes mellitus. J. Clin. Endocrinol. Metab. 104, 2239–2249 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, C.-Y., Yu, S.-W., Yin, J.-T., Yuan, X.-Y. & Wang, X.-G. Corresponding risk factors between cognitive impairment and type 1 diabetes mellitus: A narrative review. Heliyon 8, e10073 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, Z. & King, G. L. Microvascular complications of diabetes. Endocrinol. Metab. Clin. 33, 215–238 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Allen, K. V. et al. Effects of acute hypoglycemia on working memory and language processing in adults with and without type 1 diabetes. Diabetes Care 38, 1108–1115 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ewing, F. M. E., Deary, I. J., McCrimmon, R. J., Strachan, M. W. J. & Frier, B. M. Effect of acute hypoglycemia on visual information processing in adults with type 1 diabetes mellitus. Physiol. Behav. 64, 653–660 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McAulay, V., Deary, I. J., Ferguson, S. C. & Frier, B. M. Acute hypoglycemia in humans causes attentional dysfunction while nonverbal intelligence is preserved. Diabetes Care 24, 1745–1750 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mcaulay, V., Deary, I. J., Sommerfield, A. J., Matthews, G. & Frier, B. M. Effects of acute hypoglycemia on motivation and cognitive interference in people with type 1 diabetes. J. Clin. Psychopharmacol. 26, 143–151 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Sommerfield, A. J., Deary, I. J., McAulay, V. & Frier, B. M. Moderate hypoglycemia impairs multiple memory functions in healthy adults. Neuropsychology 17, 125 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Wright, R. J., Frier, B. M. & Deary, I. J. Effects of acute insulin-induced hypoglycemia on spatial abilities in adults with type 1 diabetes. Diabetes Care 32, 1503–1506 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schächinger, H., Cox, D., Linder, L., Brody, S. & Keller, U. Cognitive and psychomotor function in hypoglycemia: response error patterns and retest reliability. Pharmacol. Biochem. Behav. 75, 915–920 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Cox, D. J. et al. Relationships between hyperglycemia and cognitive performance among adults with type 1 and type 2 diabetes. Diabetes Care 28, 71–77 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Bando, S. & Nozawa, A. Detection of driver inattention from fluctuations in vehicle operating data. Artif. Life Robot. 20, 28–33 (2015).

    Article 

    Google Scholar
     

  • Cerino, E. S. et al. Variability in cognitive performance on mobile devices is sensitive to mild cognitive impairment: Results from the Einstein Aging Study. Front. Digit. Health 3, 1–17 (2021).

    Article 

    Google Scholar
     

  • Arnold, K. D. & Rohn, K. C. Internet-Enabled Experience Sampling: Innovations in Signaling and Data Sources. in Advancing Educational Research With Emerging Technology 124–151 (IGI Global, 2020).

  • Hawks, Z. W. et al. Accurate prediction of momentary cognition from intensive longitudinal data. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 8, 841–851 (2023).

    PubMed 

    Google Scholar
     

  • Germine, L., Strong, R., Singh, S. & Sliwinski, M. J. Toward dynamic phenotypes and the scalable measurement of human behavior. Neuropsychopharmacology 1–8. https://doi.org/10.1038/s41386-020-0757-1 (2020).

  • Elbalshy, M. et al. Effect of divergent continuous glucose monitoring technologies on glycaemic control in type 1 diabetes mellitus: A systematic review and meta‐analysis of randomised controlled trials. Diabetic Med. 39, e14854 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Sherr, J. L. et al. Automated insulin delivery: benefits, challenges, and recommendations. A Consensus Report of the Joint Diabetes Technology Working Group of the European Association for the Study of Diabetes and the American Diabetes Association. Diabetes Care 45, 3058–3074 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pyatak, E. A. et al. Impact of overnight glucose on next-day functioning in adults with Type 1 Diabetes: An exploratory intensive longitudinal study. Diabetes Care dc222008. https://doi.org/10.2337/dc22-2008 (2023).

  • Emmert-Streib, F. & Dehmer, M. High-dimensional LASSO-based computational regression models: regularization, shrinkage, and selection. Mach. Learn. Knowl. Extr. 1, 359–383 (2019).

    Article 

    Google Scholar
     

  • Chung, F. et al. STOP questionnaire: a tool to screen patients for obstructive sleep apnea. J. Am. Soc. Anesthesiol. 108, 812–821 (2008).

    Article 

    Google Scholar
     

  • Hingorjo, M. R., Qureshi, M. A. & Mehdi, A. Neck circumference as a useful marker of obesity: a comparison with body mass index and waist circumference. J. Pak. Med. Assoc. 62, 36 (2012).

    PubMed 

    Google Scholar
     

  • Kawaguchi, Y. et al. Different impacts of neck circumference and visceral obesity on the severity of obstructive sleep apnea syndrome. Obesity 19, 276–282 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Dancey, D. R. et al. Gender differences in sleep apnea: the role of neck circumference. Chest 123, 1544–1550 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • van Duinkerken, E. & Ryan, C. M. Diabetes mellitus in the young and the old: Effects on cognitive functioning across the life span. Neurobiol. Dis. 134, 104608 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Brands, A. M. A. et al. Cognitive performance, psychological well-being, and brain magnetic resonance imaging in older patients with type 1 diabetes. Diabetes 55, 1800–1806 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hudson, A. N., Van Dongen, H. P. A. & Honn, K. A. Sleep deprivation, vigilant attention, and brain function: a review. Neuropsychopharmacology 45, 21–30 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Axelsson, J. et al. Sleepiness and performance in response to repeated sleep restriction and subsequent recovery during semi‐laboratory conditions. Chronobiol. Int. 25, 297–308 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Mota Albuquerque, P., Ribeiro Franco, C. M. & Sampaio Rocha-Filho, P. A. Assessing the impact of sleep restriction on the attention and executive functions of medical students: a prospective cohort study. Acta Neurol Belg 1–7 https://doi.org/10.1007/s13760-023-02250-w (2023).

  • Koa, T. B. & Lo, J. C. Neurobehavioural functions during variable and stable short sleep schedules. J. Sleep Res. 30, e13252 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Gosselin, D., De Koninck, J. & Campbell, K. Novel measures to assess the effects of partial sleep deprivation on sensory, working, and permanent memory. Front. Psychol. 8, 1607 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seaquist, E. R., Teff, K. & Heller, S. R. Impaired Awareness of Hypoglycemia in Type 1 Diabetes: A Report of An NIDDK Workshop in October 2021. Diabetes Care 45, 2799–2805 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McNeilly, A. D. & McCrimmon, R. J. Impaired hypoglycaemia awareness in type 1 diabetes: lessons from the lab. Diabetologia 61, 743–750 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwartz, M. W., Krinsley, J. S., Faber, C. L., Hirsch, I. B. & Brownlee, M. Brain Glucose Sensing and the Problem of Relative Hypoglycemia. Diabetes Care 46, 237–244 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kern, W. et al. Improving influence of insulin on cognitive functions in humans. Neuroendocrinology 74, 270–280 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nesselroade, J. R. The warp and the woof of the developmental fabric. Visions of aesthetics, the environment, and development: The legacy of Joachim F. Wohlwill 213–240 (1991).

  • Sliwinski, M., Hoffman, L. & Hofer, S. Modeling retest and aging effects in a measurement burst design. In Individual pathways of change: Statistical models for analyzing learning and development (eds Molenaar, P. C. M. & Newell, K. M.) 37–50 (American Psychological Association, 2010). https://doi.org/10.1037/12140-003.

  • Vanek, J. et al. Obstructive sleep apnea, depression and cognitive impairment. Sleep Med. 72, 50–58 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Caporale, M. et al. Cognitive impairment in obstructive sleep apnea syndrome: a descriptive review. Sleep Breath. 25, 29–40 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Bubu, O. M. et al. Obstructive sleep apnea, cognition and Alzheimer’s disease: A systematic review integrating three decades of multidisciplinary research. Sleep Med. Rev. 50, 101250 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • West, R. K. et al. Waist circumference is correlated with poorer cognition in elderly type 2 diabetes women. Alzheimer’s Dementia 12, 925–929 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rodríguez-Fernández, J. M., Danies, E., Martínez-Ortega, J. & Chen, W. C. Cognitive decline, body mass index, and waist circumference in community-dwelling elderly participants: results from a nationally representative sample. J. Geriatr. Psychiatry Neurol. 30, 67–76 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • West, N. A. et al. Adiposity, change in adiposity, and cognitive decline in mid‐and late life. J. Am. Geriatr. Soc. 65, 1282–1288 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agiostratidou, G. et al. Standardizing clinically meaningful outcome measures beyond HbA1c for type 1 diabetes: A consensus report of the American Association of Clinical Endocrinologists, the American Association of Diabetes Educators, the American Diabetes Association, the Endo. Diabetes Care 40, 1622–1630 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nevo-Shenker, M. & Shalitin, S. The impact of hypo- And hyperglycemia on cognition and brain development in young children with type 1 diabetes. Horm. Res. Paediatr. 94, 115–123 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perfect, M. M. et al. Sleep, glucose, and daytime functioning in youth with type 1 diabetes. Sleep 35, 81–88 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jun, J. E. et al. Continuous glucose monitoring defined glucose variability is associated with cardiovascular autonomic neuropathy in type 1 diabetes. Diabetes Metab. Res. Rev. 35, e3092 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • McCrimmon, R. J. Consequences of recurrent hypoglycaemia on brain function in diabetes. Diabetologia 64, 971–977 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cameron, F. J., Northam, E. A. & Ryan, C. M. The effect of type 1 diabetes on the developing brain. Lancet Child Adolesc. Health 3, 427–436 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Wrighten, S. A., Piroli, G. G., Grillo, C. A. & Reagan, L. P. A look inside the diabetic brain: Contributors to diabetes-induced brain aging. Biochim. Biophys. Acta Mol. Basis. Dis. 1792, 444–453 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Vasudevan, S., Saha, A., Tarver, M. E. & Patel, B. Digital biomarkers: Convergence of digital health technologies and biomarkers. npj Digit. Med. 5, 36 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Passell, E. et al. Cognitive test scores vary with choice of personal digital device. Behav. Res. Methods 53, 2544–2557 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicosia, J. et al. To BYOD or Not: Are Device Latencies Important for Bring Your Own Device (BYOD) Smartphone Cognitive Testing? Behav. Res. Methods 55, 2800–2812 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Brands, A. M. A., Biessels, G. J., De Haan, E. H. F., Kappelle, L. J. & Kessels, R. P. C. The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28, 726–735 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • McCrimmon, R. J., Ryan, C. M. & Frier, B. M. Diabetes and cognitive dysfunction. Lancet 379, 2291–2299 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • D’Ardenne, K., Savage, C. R., Small, D., Vainik, U. & Stoeckel, L. E. Core neuropsychological measures for obesity and diabetes trials: initial report. Front. Psychol. 11, 554127 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mascarenhas Fonseca, L. et al. Glycemic variability and fluctuations in cognitive status in adults with type 1 diabetes (GluCog): observational study using ecological momentary assessment of cognition. JMIR Diabetes 8, e39750 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sliwinski, M. J. et al. Reliability and validity of ambulatory cognitive assessments. Assessment 25, 14–30 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Pylyshyn, Z. W. & Storm, R. W. Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spat. Vis. 3, 179–197 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Treviño, M. et al. How do we measure attention? Using factor analysis to establish construct validity of neuropsychological tests. Cogn. Res. Princ. Implic. 6, 1–26 (2021).


    Google Scholar
     

  • Wechsler, D. WAIS‐III administration and scoring manual. The Psychological Corporation, San Antonio, TX. Wechsler, D.(1997). WAIS III Administration and Scoring Manual. The Psychological Corporation: San Antonio, TX (1997).

  • Hartshorne, J. K. & Germine, L. T. When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. Psychol. Sci. 26, 433–443 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Chaytor, N. S. et al. Construct validity, ecological validity and acceptance of self-administered online neuropsychological assessment in adults. Clin.Neuropsychol. 35, 148–164 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, S. et al. Ecological momentary assessment of cognition in clinical and community samples: reliability and validity study. J. Med. Internet Res. 25, e45028 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortenbaugh, F. C. et al. Sustained attention across the life span in a sample of 10,000: Dissociating ability and strategy. Psychol. Sci. 26, 1497–1510 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Esterman, M., Noonan, S. K., Rosenberg, M. & Degutis, J. In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebr. Cortex 23, 2712–2723 (2013).

    Article 

    Google Scholar
     

  • Pastore, R. E. & Scheirer, C. J. Signal detection theory: Considerations for general application. Psychol. Bull. 81, 945 (1974).

    Article 

    Google Scholar
     

  • Shah, V. N., Laffel, L. M., Wadwa, R. P. & Garg, S. K. Performance of a factory-calibrated real-time continuous glucose monitoring system utilizing an automated sensor applicator. Diabetes Technol. Ther. 20, 428–433 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • American Diabetes Association. Standards of Care in Diabetes – 2023. Diabetes Care 46, S1–S291 (2023).

  • R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2023). https://www.R-project.org/.

  • Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: {Bayesian} applied regression modeling via {Stan} (2024). https://mc-stan.org/rstanarm/

  • Kay, M. tidybayes: Tidy Data and Geoms for Bayesian Models (2023). https://doi.org/10.5281/zenodo.1308151.

  • Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39, 1–13 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Segev, N. et al. Continuous glucose monitoring in the intensive care unit following total pancreatectomy with islet autotransplantation in children: Establishing accuracy of the dexcom g6 model. J. Clin. Med. 10, 1893 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Battelino, T. et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. 11, 42–57 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kovatchev, B. P. Measures of risk and glucose variability in adults versus youths. Diabetes Technol Ther. 17, 766–769 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Service, F. J. et al. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes 19, 644–655 (1970).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russell, S. J. & Beck, R. W. Design considerations for artificial pancreas pivotal studies. Diabetes Care 39, 1161–1167 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Carr, A. L. J., Evans-Molina, C. & Oram, R. A. Precision medicine in type 1 diabetes. Diabetologia 65, 1854–1866 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holt, R. I. G. et al. The management of type 1 diabetes in adults. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 44, 2589–2625 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Law, C. W. et al. A guide to creating design matrices for gene expression experiments. F1000Res 9, 1444 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee, S. & Greenwood, A. G. Note on second‐order polynomial regression models. Decis. Sci. 21, 241–245 (1990).

    Article 

    Google Scholar
     

  • Vehtarh, A., Gelman, A., Simpson, D., Carpenter, B. & Burkner, P. C. Rank-normalization, folding, and localization: an improved (formula presented) for assessing convergence of MCMC (with Discussion)*†. Bayesian Anal. 16, 667–718 (2021).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).

    Article 

    Google Scholar
     

  • Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian Framework. J. Open Source Softw. 4, 1541 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kruschke, J. K. Rejecting or accepting parameter values in Bayesian estimation. Adv. Methods Pract. Psychol. Sci. 1, 270–280 (2018).

    Article 

    Google Scholar
     

  • Brose, A., Lövdén, M. & Schmiedek, F. Daily fluctuations in positive affect positively co-vary with working memory performance. Emotion 14, 1–6 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Sliwinski, M. J., Smyth, J. M., Hofer, S. M. & Stawski, R. S. Intraindividual coupling of daily stress and cognition. Psychol. Aging 21, 545–557 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You may also like

    Today’s Diabetes News, your ultimate destination for up-to-date and insightful information on diabetes, health tips, and living a fulfilling life with diabetes. Our mission is to empower and support individuals with diabetes, their loved ones, and the wider community by providing reliable, relevant, and engaging content that fosters a healthier and happier life.

    Interesting Topics

    Most Viewed Articles

    Latest Articles

    Copyright MatchingDonors.com©️ 2024 All rights reserved.

    Are you sure want to unlock this post?
    Unlock left : 0
    Are you sure want to cancel subscription?