Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Home Type 1 Generative deep learning for the development of a type 1 diabetes simulator

Generative deep learning for the development of a type 1 diabetes simulator

by Ivan Contreras
0 comments Donate
  • Kaizer, J. S., Heller, A. K. & Oberkampf, W. L. Scientific computer simulation review. Reliab. Eng. Syst. Saf. 138, 210–218 (2015).

    Article 

    Google Scholar
     

  • Kadota, R. et al. A mathematical model of type 1 diabetes involving leptin effects on glucose metabolism. J. Theor. Biol. 456, 213–223 (2018).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Farmer Jr, T., Edgar, T. & Peppas, N. Pharmacokinetic modeling of the glucoregulatory system. J. Drug Deliv. Sci. Technol. 18, 387 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nath, A., Biradar, S., Balan, A., Dey, R. & Padhi, R. Physiological models and control for type 1 diabetes mellitus: a brief review. IFAC-PapersOnLine 51, 289–294 (2018).

    Article 

    Google Scholar
     

  • Mansell, E. J., Docherty, P. D. & Chase, J. G. Shedding light on grey noise in diabetes modelling. Biomed. Signal Process. Control 31, 16–30 (2017).

    Article 

    Google Scholar
     

  • Mari, A., Tura, A., Grespan, E. & Bizzotto, R. Mathematical modeling for the physiological and clinical investigation of glucose homeostasis and diabetes. Front. Physiol. https://doi.org/10.3389/fphys.2020.575789 (2020).

  • Hovorka, R. et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25, 905 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Man, C. D. et al. The UVA/PADOVA type 1 diabetes simulator: new features. J. Diabetes Sci. Technol. 8, 26–34 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergman, R. N. & Urquhart, J. The pilot gland approach to the study of insulin secretory dynamics. In Proceedings of the 1970 Laurentian Hormone Conference 583–605 (Elsevier, 1971).

  • Franco, R. et al. Output-feedback sliding-mode controller for blood glucose regulation in critically ill patients affected by type 1 diabetes. IEEE Trans. Control Syst. Technol. 29, 2704–2711 (2021).

    Article 

    Google Scholar
     

  • Nielsen, M. A visual proof that neural nets can compute any function. http://neuralnetworksanddeeplearning.com/chap4.html (2016).

  • Zhou, D.-X. Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal. 48, 787–794 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Nikzad, M., Movagharnejad, K., Talebnia, F. Comparative study between neural network model and mathematical models for prediction of glucose concentration during enzymatic hydrolysis. Int. J. Comput. Appl. 56, 1 (2012).

  • Nalisnick, E.T., Matsukawa, A., Teh, Y.W., Görür, D., Lakshminarayanan, B.: Do deep generative models know what they don’t know? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, https://openreview.net/forum?id=H1xwNhCcYm (2019).

  • Noguer, J., Contreras, I., Mujahid, O., Beneyto, A. & Vehi, J. Generation of individualized synthetic data for augmentation of the type 1 diabetes data sets using deep learning models. Sensors. https://doi.org/10.3390/s22134944 (2022).

  • Thambawita, V. et al. Deepfake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine. Sci. Rep. 11, 1–8 (2021).

    Article 

    Google Scholar
     

  • Marouf, M. et al. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat. Commun. 11, 1–12 (2020).

    Article 

    Google Scholar
     

  • Festag, S., Denzler, J. & Spreckelsen, C. Generative adversarial networks for biomedical time series forecasting and imputation. J. Biomed. Inform. 129, 104058 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, J., Li, H. & Zhou, S. An overview of deep generative models. IETE Tech. Rev. 32, 131–139 (2015).

    Article 

    Google Scholar
     

  • Wan, C. & Jones, D. T. Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks. Nat. Mach. Intell. 2, 540–550 (2020).

    Article 

    Google Scholar
     

  • Choudhury, S., Moret, M., Salvy, P., Weilandt, D., Hatzimanikatis, V., & Miskovic, L. Reconstructing kinetic models for dynamical studies of metabolism using generative adversarial networks. Nat. Mach. Intell. 4, 710–719 (2022).

  • Dieng, A.B., Kim, Y., Rush, A. M. & Blei, D. M. Avoiding latent variable collapse with generative skip models. In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research (eds Chaudhuri, K. & Sugiyama, M.) Vol. 89, 2397–2405 (PMLR, 2019).

  • Ruthotto, L. & Haber, E. An introduction to deep generative modeling. GAMM-Mitteilungen 44, 202100008 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Xie, T. et al. Progressive attention integration-based multi-scale efficient network for medical imaging analysis with application to COVID-19 diagnosis. Comput. Biol. Med. 159, 106947 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H., Zeng, N., Wu, P. & Clawson, K. Cov-net: A computer-aided diagnosis method for recognizing COVID-19 from chest x-ray images via machine vision. Expert Syst. Appl. 207, 118029 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, K., Liu, C., Zhu, T., Herrero, P. & Georgiou, P. Glunet: a deep learning framework for accurate glucose forecasting. IEEE J. Biomed. health Inform. 24, 414–423 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rabby, M. F. et al. Stacked LSTM based deep recurrent neural network with Kalman smoothing for blood glucose prediction. BMC Med. Inform. Decis. Mak. 21, 1–15 (2021).

    Article 

    Google Scholar
     

  • Munoz-Organero, M. Deep physiological model for blood glucose prediction in T1DM patients. Sensors 20, 3896 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noaro, G., Zhu, T., Cappon, G., Facchinetti, A. & Georgiou, P. A personalized and adaptive insulin bolus calculator based on double deep q-learning to improve type 1 diabetes management. IEEE J. Biomed. Health Inform. 27, pp. 2536–2544 (2023).

  • Emerson, H., Guy, M. & McConville, R. Offline reinforcement learning for safer blood glucose control in people with type 1 diabetes. J. Biomed. Inform. 142, 104376 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lemercier, J.-M., Richter, J., Welker, S. & Gerkmann, T. Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration. In ICASSP 2023 – 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 1–5 (2023).

  • Richter, J., Welker, S., Lemercier, J.-M., Lay, B. & Gerkmann, T. Speech enhancement and dereverberation with diffusion-based generative models. In IEEE/ACM Transactions on Audio, Speech, and Language Processing 1–13 (2023).

  • Yoo, T. K. et al. Deep learning can generate traditional retinal fundus photographs using ultra-widefield images via generative adversarial networks. Comput. Methods Prog. Biomed. 197, 105761 (2020).

    Article 

    Google Scholar
     

  • You, A., Kim, J. K., Ryu, I. H. & Yoo, T. K. Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey. Eye Vis. 9, 1–19 (2022).

    Article 

    Google Scholar
     

  • Liu, M. et al. Aa-wgan: attention augmented Wasserstein generative adversarial network with application to fundus retinal vessel segmentation. Comput. Biol. Med. 158, 106874 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Diabetic retinopathy diagnosis using multichannel generative adversarial network with semisupervision. IEEE Trans. Autom. Sci. Eng. 18, 574–585 (2021).

    Article 

    Google Scholar
     

  • Zhou, Y., Wang, B., He, X., Cui, S. & Shao, L. DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images. IEEE J. Biomed. Health Inform. 26, 56–66 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Prediction of OCT images of short-term response to anti-VEGF treatment for diabetic macular edema using different generative adversarial networks. Photodiagnosis Photodyn. Ther. 41, 103272 (2023).

  • Sun, L.-C. et al. Generative adversarial network-based deep learning approach in classification of retinal conditions with optical coherence tomography images. Graefe’s Arch. Clin. Exp. Ophthalmol. 261, 1399–1412 (2023).

    Article 

    Google Scholar
     

  • Zhang, J., Zhu, E., Guo, X., Chen, H. & Yin, J. Chronic wounds image generator based on deep convolutional generative adversarial networks. In Theoretical Computer Science: 36th National Conference, NCTCS 2018, Shanghai, China, October 13–14, 2018, Proceedings 36, 150–158 (Springer, 2018).

  • Cichosz, S. L. & Xylander, A. A. P. A conditional generative adversarial network for synthesis of continuous glucose monitoring signals. J. Diabetes Sci. Technol. 16, 1220–1223 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mujahid, O. et al. Conditional synthesis of blood glucose profiles for T1D patients using deep generative models. Mathematics. https://doi.org/10.3390/math10203741 (2022).

  • Eunice, H. W. & Hargreaves, C. A. Simulation of synthetic diabetes tabular data using generative adversarial networks. Clin. Med. J. 7, 49–59 (2021).

  • Che, Z., Cheng, Y., Zhai, S., Sun, Z. & Liu, Y. Boosting deep learning risk prediction with generative adversarial networks for electronic health records. In 2017 IEEE International Conference on Data Mining (ICDM) 787–792 (2017).

  • Noguer, J., Contreras, I., Mujahid, O., Beneyto, A. & Vehi, J. Generation of individualized synthetic data for augmentation of the type 1 diabetes data sets using deep learning models. Sensors 22, 4944 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, G., Thombre, P., Lee, M. L. & Hsu, W. Generative data augmentation for diabetic retinopathy classification. In 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI) 1096–1103 (2020).

  • Zhu, T., Yao, X., Li, K., Herrero, P. & Georgiou, P. Blood glucose prediction for type 1 diabetes using generative adversarial networks. In CEUR Workshop Proceedings, Vol. 2675, 90–94 (2020).

  • Zeng, A., Chen, M., Zhang, L., & Xu, Q. Are transformers effective for time series forecasting? In Proceedings of the AAAI conference on artificial intelligence.37, pp. 11121–11128 (2023).

  • Zhu, T., Li, K., Herrero, P. & Georgiou, P. Glugan: generating personalized glucose time series using generative adversarial networks. IEEE J. Biomed. Health Inf. https://doi.org/10.1109/JBHI.2023.3271615 (2023).

  • Lanusse, F. et al. Deep generative models for galaxy image simulations. Mon. Not. R. Astron. Soc. 504, 5543–5555 (2021).

    Article 

    Google Scholar
     

  • Ghosh, A. & ATLAS collaboration. Deep generative models for fast shower simulation in ATLAS. In Journal of Physics: Conference Series. IOP Publishing. 1525, p. 012077 (2020).

  • Borsoi, R. A., Imbiriba, T. & Bermudez, J. C. M. Deep generative endmember modeling: an application to unsupervised spectral unmixing. IEEE Trans. Comput. Imaging 6, 374–384 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ma, H., Bhowmik, D., Lee, H., Turilli, M., Young, M., Jha, S., & Ramanathan, A.. Deep generative model driven protein folding simulations. In I. Foster, G. R. Joubert, L. Kucera, W. E. Nagel, & F. Peters (Eds.), Parallel Computing: Technology Trends (pp. 45–55). (Advances in Parallel Computing; Vol. 36). IOS Press BV. https://doi.org/10.3233/APC200023 (2020)

  • Wen, J., Ma, H. & Luo, X. Deep generative smoke simulator: connecting simulated and real data. Vis. Comput. 36, 1385–1399 (2020).

    Article 

    Google Scholar
     

  • Mincu, D. & Roy, S. Developing robust benchmarks for driving forward AI innovation in healthcare. Nat. Mach. Intell. 4, 916–921 (2022).

  • Mirza, M. & Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).

  • Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 1125–1134 (2017).

  • Ahmad, S. et al. Generation of virtual patient populations that represent real type 1 diabetes cohorts. Mathematics 9, 1200 (2021).

  • Bertachi, A. et al. Prediction of nocturnal hypoglycemia in adults with type 1 diabetes under multiple daily injections using continuous glucose monitoring and physical activity monitor. Sensors https://doi.org/10.3390/s20061705 (2020).

  • Marling, C. & Bunescu, R. The OhioT1DM dataset for blood glucose level prediction: update 2020. In CEUR Workshop Proceedings, Vol. 2675, 71 (NIH Public Access, 2020).

  • Estremera, E., Cabrera, A., Beneyto, A. & Vehi, J. A simulator with realistic and challenging scenarios for virtual T1D patients undergoing CSII and MDI therapy. J. Biomed. Inform. 132, 104141 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Marin, I., Gotovac, S., Russo, M. & Božić-Štulić, D. The effect of latent space dimension on the quality of synthesized human face images. J. Commun. Softw. Syst. 17, 124–133 (2021).

    Article 

    Google Scholar
     

  • The Editorial Board. Into the latent space. Nat. Mach. Intell. 2, 151 (2020).

  • Battelino, T. et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. https://doi.org/10.1016/S2213-8587(22)00319-9 (2022).

  • Beneyto, A., Bertachi, A., Bondia, J. & Vehi, J. A new blood glucose control scheme for unannounced exercise in type 1 diabetic subjects. IEEE Trans. Control Syst. Technol. 28, 593–600 (2020).

    Article 

    Google Scholar
     

  • Herrero, P., Alalitei, A., Reddy, M., Georgiou, P. & Oliver, N. Robust determination of the optimal continuous glucose monitoring length of intervention to evaluate long-term glycemic control. Diabetes Technol. Ther. 23, 314–319 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cryer, P. E. Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes 63, 2188–2195 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, H., Aihara, K. & Chen, L. Detecting causality from nonlinear dynamics with short-term time series. Sci. Rep. 4, 1–10 (2014).

    Article 

    Google Scholar
     

  • Verma, A. K. et al. Skeletal muscle pump drives control of cardiovascular and postural systems. Sci. Rep. 7, 1–8 (2017).

    Article 

    Google Scholar
     

  • Nemat, H., Khadem, H., Elliott, J. & Benaissa, M. Causality analysis in type 1 diabetes mellitus with application to blood glucose level prediction. Comput. Biol. Med. 153, 106535 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breton, M. D. & Kovatchev, B. P. One year real-world use of the control-IQ advanced hybrid closed-loop technology. Diabetes Technol. Ther. 23, 601–608 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mujahid, O. Ai-based type 1 diabetes simulator. Github https://doi.org/10.5281/zenodo.10722210 (2024).

  • You may also like

    Today’s Diabetes News, your ultimate destination for up-to-date and insightful information on diabetes, health tips, and living a fulfilling life with diabetes. Our mission is to empower and support individuals with diabetes, their loved ones, and the wider community by providing reliable, relevant, and engaging content that fosters a healthier and happier life.

    Most Viewed Articles

    Latest Articles

    Copyright MatchingDonors.com©️ 2025 All rights reserved.

    Are you sure want to unlock this post?
    Unlock left : 0
    Are you sure want to cancel subscription?
    -
    00:00
    00:00
      -
      00:00
      00:00