Bano, G. Glucose homeostasis, obesity and diabetes. Best Pract. Res. Clin. Obstet. Gynaecol. 27(5), 715–726. https://doi.org/10.1016/j.bpobgyn.2013.02.007 (2013).
Ankışhan, H. Blood pressure prediction from speech recordings. Biomed. Signal Process. Control 58, 101842. https://doi.org/10.1016/j.bspc.2019.101842 (2020).
Shankar, O. & Lohiya, B. V. Cardiovocal syndrome—A rare presentation of primary pulmonary hypertension. Indian Heart J. 66(3), 375–377. https://doi.org/10.1016/j.ihj.2013.12.055 (2014).
Alam, M. Z. et al. Predicting pulmonary function from the analysis of voice: A machine learning approach. Front. Digit. Health 8(4), 750226. https://doi.org/10.3389/fdgth.2022.750226 (2022).
James, A. P. Heart rate monitoring using human speech spectral features. HCIS 5, 1–2. https://doi.org/10.1186/s13673-015-0052-z (2015).
Poleshenkov, D. & Basov, O. Application of method of extracting pulse rate from speech signal in absence of priori information about speaker to improve traffic safety. Transp. Res. Procedia 1(50), 545–551. https://doi.org/10.1016/j.trpro.2020.10.065 (2020).
Suppakitjanusant, P. et al. Predicting glycemic control status and high blood glucose levels through voice characteristic analysis in patients with cystic fibrosis-related diabetes (CFRD). Sci. Rep. 13(1), 8617. https://doi.org/10.1038/s41598-023-35416-w (2023).
Sidorova, J., Carbonell, P. & Čukić, M. Blood glucose estimation from voice: First review of successes and challenges. J. Voice 36(5), 737-e1. https://doi.org/10.1016/j.jvoice.2020.08.034 (2022).
Czupryniak, L. et al. 378-P: Human voice is modulated by hypoglycemia and hyperglycemia in type 1 diabetes. Diabetes https://doi.org/10.2337/db19-378-P (2019).
Michaelis, P. R. Detection of extreme hypoglycemia and hyperglycemia based on automatic analysis of speech patterns. US patent US 7(925,508):B1 (2011).
Tschöpe, C., Duckhorn, F., Wolff, M. & Saeltzer, G. Estimating blood sugar from voice samples: a preliminary study. In 2015 International Conference on Computational Science and Computational Intelligence (CSCI) 804–805 (IEEE, 2015). https://doi.org/10.1109/CSCI.2015.184
Rasmusson, J., Karlsson. P. C., Svensson, M., Nilsson, C. & Eklund, J. Inventors; Sony Group Corp, assignee. Method and device for blood glucose level monitoring. United States patent US 11,363,974. (2022).
Motorin, V. Scientific solutions for the parameter’s automation in biochemical and biomechanical processes of the operational estimation of blood glucose from human voice. Theory Pract. Mod. Sci. 7, 214–26 (2016).
Jeon, J., Palanica, A., Sarabadani, S., Lieberman, M. & Fossat, Y. Biomarker potential of real-world voice signals to predict abnormal blood glucose levels. bioRxiv. (2020).
Sidorova, J. & Anisimova, M. Impact of diabetes mellitus on voice: A methodological commentary. J. Voice 36(2), 294-e1. https://doi.org/10.1016/j.jvoice.2020.05.015 (2022).
Kaufman, J. M., Thommandram, A. & Fossat, Y. Acoustic analysis and prediction of type 2 diabetes mellitus using smartphone-recorded voice segments. Mayo Clin. Proc. Digit. Health 1(4), 534–544. https://doi.org/10.1016/j.mcpdig.2023.08.005 (2023).
Park, M. C. Understanding the multi-mass model and sound generation of vocal fold oscillation. AIP Adv. 9(10), 105002. https://doi.org/10.1063/1.5113911 (2019).
Titze, I. R. Vocal fold mass is not a useful quantity for describing F0 in vocalization. J. Speech Lang. Hear. Res. 54(2), 520–522 (2011).
Hirano, M. Morphological structure of the vocal cord as a vibrator and its variations. Folia phoniatrica et logopaedica 26(2), 89–94 (1974).
Chhetri, D. K., Neubauer, J., Sofer, E. & Berry, D. A. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control. J. Acoust. Soc. Am. 135(4), 2052–64. https://doi.org/10.1121/1.4865918.PMID:25235003;PMCID:PMC4188037 (2014).
Hasanloei, M. A. et al. Non-diabetic hyperglycemia and some of its correlates in ICU hospitalized patients receiving enteral nutrition. Maedica 12(3), 174 (2017).
American Diabetes Association Professional Practice Committee 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2022. Diabetes Care 45, S17–S38. https://doi.org/10.2337/dc22-S002 (2022).
Fitch, J. L. Consistency of fundamental frequency and perturbation in repeated phonations of sustained vowels, reading, and connected speech. J. Speech Hear. Disord. 55(2), 360–3. https://doi.org/10.1044/jshd.5502.360 (1990).
Moon, K. R., Chung, S. M., Park, H. S. & Kim, H. S. Materials of acoustic analysis: sustained vowel versus sentence. J. Voice 26(5), 563–565. https://doi.org/10.1016/j.jvoice.2011.09.007 (2012).
Jadoul, Y., Thompson, B. & De Boer, B. Introducing parselmouth: A python interface to praat. J. Phon. 71, 1–15. https://doi.org/10.1016/j.wocn.2018.07.001 (2018).
Boersma, P. & Weenink, D. Praat: Doing phonetics by computer [Computer program]. http://www.praat.org/ (2011).
Bais, F. & van der Neut, J. Adapting the Robust effect size cliff’s delta to compare behaviour profiles. Surv. Res. Methods. 16(3), 329–352. https://doi.org/10.18148/srm/2022.v16i2.7908 (2022).
Nakagawa, S., Johnson, P. C. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14(134), 20170213. https://doi.org/10.1098/rsif.2017.0213 (2017).
Liang, Z. Mining associations between glycemic variability in awake-time and in-sleep among non-diabetic adults. Front. Med. Technol. 4(4), 1026830. https://doi.org/10.3389/fmedt.2022.1026830 (2022).
Bavaresco, S. S. et al. comparison between muscle strength and flexibility of the lower limbs of individuals with and without type 2 diabetes mellitus. Fisioter. Pesqui. 18(26), 137–44. https://doi.org/10.1590/1809-2950/17024826022019 (2019).
Aminuddin, A. et al. The association between arterial stiffness and muscle indices among healthy subjects and subjects with cardiovascular risk factors: An evidence-based review. Front. Physiol. 12, 742338. https://doi.org/10.3389/fphys.2021.742338 (2021).
Pasquel, F. J. & Umpierrez, G. E. Hyperosmolar hyperglycemic state: A historic review of the clinical presentation, diagnosis, and treatment. Diabetes Care 37(11), 3124–3131. https://doi.org/10.2337/dc14-0984 (2014).
Wu, L. & Zhang, Z. Computational study of the impact of dehydration-induced vocal fold stiffness changes on voice production. J. Voice 38(4), 836–843. https://doi.org/10.1016/j.jvoice.2022.02.001 (2022).
Hackney, K. J., Cook, S. B., Fairchild, T. J. & Ploutz-Snyder, L. L. Skeletal muscle volume following dehydration induced by exercise in heat. Extrem. Physiol. Med. 1(1), 3. https://doi.org/10.1186/2046-7648-1-3.PMID:23849266;PMCID:PMC3707098 (2012).
Ori, Y. et al. Effect of hemodialysis on the thickness of vocal folds: A possible explanation for postdialysis hoarseness. Nephron Clin. Pract. 103(4), c144–c148. https://doi.org/10.1159/000092911 (2006) (Epub 2006 Apr 24 PMID: 16636582).
Zhang, Z. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. J. Acoust. Soc. Am. 139(4), 1493. https://doi.org/10.1121/1.4944754.PMID:27106298;PMCID:PMC4818279 (2016).
Khafaie, M. A. et al. Role of blood glucose and fat profile in lung function pattern of Indian type 2 diabetic subjects. Multidiscip. Respir. Med. 14, 22. https://doi.org/10.1186/s40248-019-0184-5 (2019).
Pinyopodjanard, S. et al. Instrumental acoustic voice characteristics in adults with type 2 diabetes. J. Voice 35, 116–121. https://doi.org/10.1016/j.jvoice.2019.07.003 (2021).
Chitkara, D. & Sharma, R. Voice based detection of type 2 diabetes mellitus. In 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB) 83–87 (IEEE publications, 2016). https://doi.org/10.1109/AEEICB.2016.7538402
Low, S. et al. Higher ratio of extracellular water to total body water was associated with reduced cognitive function in type 2 diabetes. J. Diabetes 13, 222–231. https://doi.org/10.1111/1753-0407.13104 (2021).
Dewan, K., Chhetri, D. K. & Hoffman, H. Reinke’s edema management and voice outcomes. Laryngoscope Investig. Otolaryngol. 7, 1042–1050. https://doi.org/10.1002/lio2.840 (2022).
Protopapas, A. & Lieberman, P. Fundamental frequency of phonation and perceived emotional stress. J. Acoust. Soc. Am. 101(4), 2267–2277 (1997).
Bänziger, T. & Scherer, K. R. The role of intonation in emotional expressions. Speech Commun. 46(3–4), 252–267 (2005).
Guidi, A. et al. Automatic analysis of speech F0 contour for the characterization of mood changes in bipolar patients. Biomed. Signal Process. Control. 1(17), 29–37 (2015).
Longo, L., Pipitone, L. L., Cilfone, A., Gobbi, L. & Mariani, L., Reinke’s edema: New insights into voice analysis, a retrospective study. J. Voice. https://doi.org/10.1016/j.jvoice.2023.08.008 (2023). Epub ahead of print. PMID: 37716890.
Dworkin-Valenti, J. P. et al. Laryngeal inflammation. Ann. Otol. Rhinol. 2, 1058–1066 (2015).
Jackson-Menaldi, C. A., Dzul, A. I. & Holland, R. W. Allergies and vocal fold edema: A preliminary report. J. Voice 13(1), 113–122 (1999).
Groenewald, N. E. et al. Reflux symptoms and vocal characteristics in adults with non-organic voice disorders. S. Afr. J. Commun. Disord. 69(1), e1–e9. https://doi.org/10.4102/sajcd.v69i1.935.PMID:36331218;PMCID:PMC9634952 (2022).
Junuzović-Žunić, L., Ibrahimagić, A. & Altumbabić, S. Voice characteristics in patients with thyroid disorders. Eurasian J. Med. 51(2), 101 (2019).