Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Home Type 1 Lower left atrial function in young individuals with type 1 diabetes mellitus compared to healthy controls: an echocardiographic study

Lower left atrial function in young individuals with type 1 diabetes mellitus compared to healthy controls: an echocardiographic study

by Johanna Thegerström
0 comments Donate
  • Rosengren, A. et al. Long-term excess risk of heart failure in people with type 1 diabetes: A prospective case-control study. Lancet Diabetes Endocrinol. 3, 876–885. https://doi.org/10.1016/S2213-8587(15)00292-2 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cieluch, A. & Zozulinska-Ziolkiewicz, D. Can we prevent mitochondrial dysfunction and diabetic cardiomyopathy in type 1 diabetes mellitus?. Int. J. Mol. Sci. 21, 2852. https://doi.org/10.3390/ijms21082852 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso, N., & Mauricio, D. Pathogenesis, clinical features and treatment of diabetic cardiomyopathy. Adv. Exp. Med. Biol. 1067, 197–217. https://doi.org/10.1007/5584_2017_105 (2018).

  • Patterson, C. C. et al. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 157, 107842. https://doi.org/10.1016/j.diabres.2019.107842 (2019).

  • Ifuku, M. et al. Left atrial dysfunction and stiffness in pediatric and adult patients with Type 1 diabetes mellitus assessed with speckle tracking echocardiography. Pediatr. Diabetes 22, 303–319. https://doi.org/10.1111/pedi.13141 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Álvarez-Almazán, S., Filisola-Villaseñor, J. G., Alemán-González-Duhart, D., Tamay-Cach, F. & Mendieta-Wejebe, J. E. Current molecular aspects in the development and treatment of diabetes. J. Physiol. Biochem. 76, 13–35. https://doi.org/10.1007/s13105-019-00717-0 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Intensive Diabetes Treatment and Cardiovascular Outcomes in Type 1 Diabetes: The DCCT/EDIC study 30-year follow-up. Diabetes Care 39, 686–693. https://doi.org/10.2337/dc15-1990 (2016).

  • Huerta-Uribe, N., Ramírez-Vélez, R., Izquierdo, M. & García-Hermoso, A. Association between physical activity, sedentary behavior and physical fitness and glycated hemoglobin in youth with type 1 diabetes: A systematic review and meta-analysis. Sports Med. 53, 111–123. https://doi.org/10.1007/s40279-022-01741-9 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Vestberg, D., Olsson, M., Gudbjörnsdottir, S., Svensson, A. M. & Lind, M. Relationship between overweight and obesity with hospitalization for heart failure in 20,985 patients with type 1 diabetes: A population-based study from the Swedish National Diabetes Registry. Diabetes Care 36, 2857–2861. https://doi.org/10.2337/dc12-2007 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vilarrasa, N., San Jose, P., Rubio, M. Á. & Lecube, A. Obesity in patients with type 1 diabetes: links, risks and management challenges. Diabetes Metab. Syndr. Obes. Targets Ther. 14, 2807–2827. https://doi.org/10.2147/dmso.s223618 (2021).

    Article 

    Google Scholar
     

  • Corbin, K. D. et al. Obesity in type 1 diabetes: Pathophysiology, clinical impact, and mechanisms. Endocr. Rev. 39, 629–663. https://doi.org/10.1210/er.2017-00191 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Vazeou, A. et al. Increased prevalence of cardiovascular risk factors in children and adolescents with type 1 diabetes and hypertension: The SWEET international database. Diabetes Obes. Metab. 24, 2420–2430. https://doi.org/10.1111/dom.14834 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tikkanen-Dolenc, H. et al. Frequent and intensive physical activity reduces risk of cardiovascular events in type 1 diabetes. Diabetologia 60, 574–580. https://doi.org/10.1007/s00125-016-4189-8 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wake, A. D. Protective effects of physical activity against health risks associated with type 1 diabetes: “Health benefits outweigh the risks”. World J. Diab. 13, 161–184. https://doi.org/10.4239/wjd.v13.i3.161 (2022).

    Article 

    Google Scholar
     

  • Gómez-Perez, A. M., Damas-Fuentes, M., Cornejo-Pareja, I. & Tinahones, F. J. Heart failure in type 1 diabetes: A complication of concern? A narrative review. J. Clin. Med. 10, 4497. https://doi.org/10.3390/jcm10194497 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mandavia, C. H., Aroor, A. R., Demarco, V. G. & Sowers, J. R. Molecular and metabolic mechanisms of cardiac dysfunction in diabetes. Life Sci. 92, 601–608. https://doi.org/10.1016/j.lfs.2012.10.028 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miki, T., Yuda, S., Kouzu, H. & Miura, T. Diabetic cardiomyopathy: Pathophysiology and clinical features. Heart Failure Rev. 18, 149–166. https://doi.org/10.1007/s10741-012-9313-3 (2013).

    Article 

    Google Scholar
     

  • Nemes, A. et al. Complex evaluation of left atrial dysfunction in patients with type 1 diabetes mellitus by three-dimensional speckle tracking echocardiography: results from the MAGYAR-Path Study. Anatol. J. Cardiol. 16, 587–593. https://doi.org/10.5152/AnatolJCardiol.2015.6225 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Rakha, S. & Aboelenin, H. M. Left ventricular functions in pediatric patients with ten years or more type 1 diabetes mellitus: Conventional echocardiography, tissue Doppler, and two-dimensional speckle tracking study. Pediatr. Diabetes 20, 946–954. https://doi.org/10.1111/pedi.12900 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ward, M. Mechanisms underlying the impaired contractility of diabetic cardiomyopathy. World J. Cardiol. 6, 577. https://doi.org/10.4330/wjc.v6.i7.577 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salvador, D. B. et al. Diabetes and myocardial fibrosis. JACC Cardiovasc. Imaging 15, 796–808. https://doi.org/10.1016/j.jcmg.2021.12.008 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Brunvand, L., Fugelseth, D., Stensaeth, K. H., Dahl-Jørgensen, K. & Margeirsdottir, H. D. Early reduced myocardial diastolic function in children and adolescents with type 1 diabetes mellitus a population-based study. BMC Cardiovasc. Disord. 16, 103. https://doi.org/10.1186/s12872-016-0288-1 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wojcik, M. & Starzyk, J. Left ventricular diastolic dysfunction in adolescents with type 1 diabetes reflects the long- but not short-term metabolic control. J. Pediatr. Endocrinol. Metab. 23, 1055–1064. https://doi.org/10.1515/jpem.2010.167 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Nielsen, A. B. et al. Normal values and reference ranges for left atrial strain by speckle-tracking echocardiography: The Copenhagen City Heart Study. Eur. Heart J. Cardiovasc. Imaging 23, 42–51. https://doi.org/10.1093/ehjci/jeab201 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Sugimoto, T. et al. Echocardiographic reference ranges for normal left atrial function parameters: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 19, 630–638. https://doi.org/10.1093/ehjci/jey018 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Khan, M. S. et al. Left atrial function in heart failure with preserved ejection fraction: A systematic review and meta-analysis. Eur. J. Heart Fail. 22, 472–485. https://doi.org/10.1002/ejhf.1643 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hoit, B. Assessment of left atrial function by echocardiography: Novel insights. Curr. Cardiol. Rep. 20, 96. https://doi.org/10.1007/s11886-018-1044-1 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Boe, E. S. O. Left atrial strain imaging: ready for clinical implementation in heart failure with preserved ejection fraction. Eur. Heart J. Cardiovasc. Imaging 23, 1169–1170. https://doi.org/10.1093/ehjci/jeac059 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, A. et al. Normal values of left atrial size and function and the impact of age: Results of the world alliance societies of echocardiography study. J. Am. Soc. Echocardiogr. 35, 154–164. https://doi.org/10.1016/j.echo.2021.08.008 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Morris, D. A. et al. Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction. JACC Cardiovasc. Imaging 11, 1405–1415. https://doi.org/10.1016/j.jcmg.2017.07.029 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Tadic, M. & Cuspidi, C. Left atrial function in diabetes: Does it help?. Acta Diabetol. 58, 131–137. https://doi.org/10.1007/s00592-020-01557-x (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Cole, T. J. & Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obesity 7, 284–294. https://doi.org/10.1111/j.2047-6310.2012.00064.x (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the american society of echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr. 28, 1-39.e14. https://doi.org/10.1016/j.echo.2014.10.003 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Brudin, L. J. & Pahlm, O. Comparison of two commonly used reference materials for exercise bicycle tests with a Swedish clinical database of patients with normal outcome. Clin. Physiol. Funct. Imaging 34, 297–307. https://doi.org/10.1111/cpf.12097 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dimeglio, L. A. et al. ISPAD Clinical Practice Consensus Guidelines 2018: Glycemic control targets and glucose monitoring for children, adolescents, and young adults with diabetes. Pediatr. Diabetes 19, 105–114. https://doi.org/10.1111/pedi.12737 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Van Der Schueren, B. et al. Obesity in people living with type 1 diabetes. Lancet Diab. Endocrinol. 9, 776–785. https://doi.org/10.1016/s2213-8587(21)00246-1 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kou, S. et al. Echocardiographic reference ranges for normal cardiac chamber size: Results from the NORRE study. Eur Heart J. Cardiovasc. Imaging 15, 680–690. https://doi.org/10.1093/ehjci/jet284 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Díaz, A., Zócalo, Y. & Bia, D. Percentile curves for left ventricle structural, functional and haemodynamic parameters obtained in healthy children and adolescents from echocardiography-derived data. J. Echocardiogr. 18, 16–43. https://doi.org/10.1007/s12574-019-00425-0 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kristiansen, E. et al. Assessing heart rate variability in type 1 diabetes mellitus—Psychosocial stress a possible confounder. Ann. Noninvas. Electrocardiol. 25, e12760. https://doi.org/10.1111/anec.12760 (2020).

    Article 

    Google Scholar
     

  • Metwalley, K. A., Hamed, S. A. & Farghaly, H. S. Cardiac autonomic function in children with type 1 diabetes. Eur. J. Pediatr. 177, 805–813. https://doi.org/10.1007/s00431-018-3122-1 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Rundqvist, L., Faresjö, M., Carlsson, E. & Blomstrand, P. Regular endurance training in adolescents impacts atrial and ventricular size and function. Eur. Heart J. Cardiovasc. Imaging. 18, 681–687. https://doi.org/10.1093/ehjci/jew150 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Letnes, J. M. et al. Left atrial volume, cardiorespiratory fitness, and diastolic function in healthy individuals: The HUNT study, Norway. J. Am. Heart Assoc. 9, e014682. https://doi.org/10.1161/jaha.119.014682 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zairi, I. M. K. et al. Impairment of left and right ventricular longitudinal strain in asymptomatic children with type 1 diabetes. Indian Heart J. 71, 249–255. https://doi.org/10.1016/j.ihj.2019.04.008 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cioffi, G., & Stefenelli, C. Influence of age on the relationship between left atrial performance and left ventricular systolic and diastolic function in systemic arterial hypertension. Exp. Clin. Cardiol. 11, 305–310 (2006).

  • Swedish National Diabetes Register (NDR), Swediabkids Annual Report. https://doi.org/10.18158/S1t0tko3K (2020).

  • Hoit, B. Left atrial size and function: Role in prognosis. J. Am. Coll. Cardiol. 63, 493–505. https://doi.org/10.1016/j.jacc.2013.10.055 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Pinhas-Hamiel, O. et al. Prevalence of overweight, obesity and metabolic syndrome components in children, adolescents and young adults with type 1 diabetes mellitus. Diab. Metab. Res. Rev. 31, 76–84. https://doi.org/10.1002/dmrr.2565 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Marlow, A. L. et al. Young children, adolescent girls and women with type 1 diabetes are more overweight and obese than reference populations, and this is associated with increased cardiovascular risk factors. Diab. Med. 36, 1487–1493. https://doi.org/10.1111/dme.14133 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mahfouz, R. A., Gomma, A., Goda, M. & Safwat, M. Relation of left atrial stiffness to insulin resistance in obese children: Doppler strain imaging study. Echocardiography 32, 1157–1163. https://doi.org/10.1111/echo.12824 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cleland, S. J., Fisher, B. M., Colhoun, H. M., Sattar, N. & Petrie, J. R. Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks?. Diabetologia 56, 1462–1470. https://doi.org/10.1007/s00125-013-2904-2 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura, K. et al. Pathophysiology and treatment of diabetic cardiomyopathy and heart failure in patients with diabetes mellitus. Int. J. Mol. Sci. 23, 3587. https://doi.org/10.3390/ijms23073587 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henriksson, H. H. P. et al. Cardiorespiratory fitness, muscular strength, and obesity in adolescence and later chronic disability due to cardiovascular disease: a cohort study of 1 million men. Eur. Heart J. 41, 1503–1510. https://doi.org/10.1093/eurheartj/ehz774 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, M. et al. Left atrial function in young strength athletes: Four-dimensional automatic quantitation study. Int. J. Cardiovas. Imaging 38, 1929–1937. https://doi.org/10.1007/s10554-022-02585-0 (2022).

    Article 

    Google Scholar
     

  • You may also like

    Today’s Diabetes News, your ultimate destination for up-to-date and insightful information on diabetes, health tips, and living a fulfilling life with diabetes. Our mission is to empower and support individuals with diabetes, their loved ones, and the wider community by providing reliable, relevant, and engaging content that fosters a healthier and happier life.

    Most Viewed Articles

    Latest Articles

    Copyright MatchingDonors.com©️ 2025 All rights reserved.

    Are you sure want to unlock this post?
    Unlock left : 0
    Are you sure want to cancel subscription?
    -
    00:00
    00:00
      -
      00:00
      00:00