Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Home Diabetes Complications Tear-fluid-derived biomarkers of ocular complications in diabetes: a systematic review and meta-analysis | BMC Medicine

Tear-fluid-derived biomarkers of ocular complications in diabetes: a systematic review and meta-analysis | BMC Medicine

by Nhan H. T. Pham
0 comments Donate
  • Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. 2023;402(10397):203–34.

  • Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: an overview. Avicenna J Med. 2020;10(4):174–88.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diagnosis and classification of diabetes mellitus. Diabetes Care. 2011;34 Suppl 1(Suppl 1), S62–9.

  • Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology. 2021;128(11):1580–91.

    Article 
    PubMed 

    Google Scholar
     

  • Han SB, Yang HK, Hyon JY. Influence of diabetes mellitus on anterior segment of the eye. Clin Interv Aging. 2019;14:53–63.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferrara M, Loda A, Coco G, Grassi P, Cestaro S, Rezzola S, et al. Diabetic retinopathy: soluble and imaging ocular biomarkers. J Clin Med. 2023;12(3):912.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O’Neal DN, Januszewski AS. Biomarkers in diabetic retinopathy. Rev Diabet Stud. 2015;12(1–2):159–95.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rizvi A, Rizvi F, Lalakia P, Hyman L, Frasso R, Sztandera L, et al. Is artificial intelligence the cost-saving lens to diabetic retinopathy screening in low- and middle-income countries? Cureus. 2023;15(9): e45539.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu W, Joseph S, Li R, Woods E, Sun J, Shen M, et al. Population impact and cost-effectiveness of artificial intelligence-based diabetic retinopathy screening in people living with diabetes in Australia: a cost effectiveness analysis. eClinicalMedicine. 2024;67:102387.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vujosevic S, Aldington SJ, Silva P, Hernandez C, Scanlon P, Peto T, et al. Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol. 2020;8(4):337–47.

    Article 
    PubMed 

    Google Scholar
     

  • Abou Taha A, Dinesen S, Vergmann AS, Grauslund J. Present and future screening programs for diabetic retinopathy: a narrative review. Int J Retina Vitreous. 2024;10(1):14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagan S, Martin E, Enríquez-de-Salamanca A. Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. Epma J. 2016;7(1):15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaštelan S, Orešković I, Bišćan F, Kaštelan H, Gverović AA. Inflammatory and angiogenic biomarkers in diabetic retinopathy. Biochem Med (Zagreb). 2020;30(3): 030502.

    Article 
    PubMed 

    Google Scholar
     

  • Suárez-Cortés T, Merino-Inda N, Benitez-Del-Castillo JM. Tear and ocular surface disease biomarkers: a diagnostic and clinical perspective for ocular allergies and dry eye disease. Exp Eye Res. 2022;221: 109121.

    Article 
    PubMed 

    Google Scholar
     

  • Wong WKM, Polkamp M, Farr RJ, Kunte PS, Hardikar HP, Yajnik CS, et al. MicroRNA profiling from tears as a potential non-invasive method for early detection of diabetic retinopathy. Methods Mol Biol. 2023;2678:117–34.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponzini E. Tear biomarkers. Adv Clin Chem. 2024;120:69–115.

    Article 
    PubMed 

    Google Scholar
     

  • Król-Grzymała A, Sienkiewicz-Szłapka E, Fiedorowicz E, Rozmus D, Cieślińska A, Grzybowski A. Tear biomarkers in Alzheimer’s and Parkinson’s diseases, and multiple sclerosis: implications for diagnosis (systematic review). Int J Mol Sci. 2022;23(17):10123.

  • Khanna RK, Catanese S, Emond P, Corcia P, Blasco H, Pisella PJ. Metabolomics and lipidomics approaches in human tears: a systematic review. Surv Ophthalmol. 2022;67(4):1229–43.

    Article 
    PubMed 

    Google Scholar
     

  • Aydin E, Gokhale M, Azizoglu S, Suphioglu C. To see or not to see: a systematic review of the importance of human ocular surface cytokine biosignatures in ocular allergy. Cells. 2019;8(6):620.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poon SHL, Cheung JJ, Shih KC, Chan YK. A systematic review of multimodal clinical biomarkers in the management of thyroid eye disease. Rev Endocr Metab Disord. 2022;23(3):541–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Roda M, Corazza I, Bacchi Reggiani ML, Pellegrini M, Taroni L, Giannaccare G, et al. Dry eye disease and tear cytokine levels-a meta-analysis. Int J Mol Sci. 2020;21(9):3111.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Navel V, Malecaze J, Pereira B, Baker JS, Malecaze F, Sapin V, et al. Oxidative and antioxidative stress markers in keratoconus: a systematic review and meta-analysis. Acta Ophthalmol. 2021;99(6):e777–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ponzini E, Scotti L, Grandori R, Tavazzi S, Zambon A. Lactoferrin concentration in human tears and ocular diseases: a meta-analysis. Invest Ophthalmol Vis Sci. 2020;61(12):9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amorim M, Martins B, Caramelo F, Gonçalves C, Trindade G, Simão J, et al. Putative biomarkers in tears for diabetic retinopathy diagnosis. Front Med (Lausanne). 2022;9: 873483.

    Article 
    PubMed 

    Google Scholar
     

  • Costagliola C, Romano V, De Tollis M, Aceto F, dell’Omo R, Romano MR, et al. TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy. Mediators Inflamm. 2013;2013:629529.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheikhrezaee M, Alizadeh MR, Abediankenari S. The tear VEGF and IGFBP3 in healthy and diabetic retinopathy. Int Diabetes Dev Ctries. 2020;40(1):93–8.

    Article 
    CAS 

    Google Scholar
     

  • Rohatgi A. WebPlotDigitizer Pacifica, CA, USA 2022;4.6. Available from: https://automeris.io/WebPlotDigitizer.

  • Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2000.

  • Julian PTH, Douglas GA, Peter CG, Peter J, David M, Andrew DO, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343: d5928.

    Article 

    Google Scholar
     

  • Jonathan ACS, Miguel AH, Barnaby CR, Jelena S, Nancy DB, Meera V, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355: i4919.


    Google Scholar
     

  • Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balduzzi S, Rücker G, G S. How to perform a meta-analysis with R: a practical tutorial. Evid-Based Mental Health. 2019;22:153–60.

  • Harrer M, Cuijpers P, Furukawa T, D ED. dmetar: companion R package for the guide ‘doing meta-analysis in R. 2019.

  • Harrer M, Cuijpers P, Furukawa TA, Ebert DD. Doing meta-analysis with R: a hands-on guide. 1st ed. Boca Raton, FL and London: Chapman & Hall/CRC Press; 2021. p. 2021.

    Book 

    Google Scholar
     

  • Mei C, Pan L, Xu W, Xu H, Zhang Y, Li Z, et al. An ultrasensitive reusable aptasensor for noninvasive diabetic retinopathy diagnosis target on tear biomarker. Sens Actuators, B Chem. 2021;345: 130398.

    Article 
    CAS 

    Google Scholar
     

  • Manchikanti V, Kasturi N, Rajappa M, Gochhait D. Ocular surface disorder among adult patients with type II diabetes mellitus and its correlation with tear film markers: a pilot study. Taiwan J Ophthalmol. 2021;11(2):156–60.

    Article 
    PubMed 

    Google Scholar
     

  • Byambajav M, Collier A, Shu X, Hagan S. Tear fluid biomarkers and quality of life in people with type 2 diabetes and dry eye disease. Metabolites. 2023;13(6):733.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu R, Ma B, Gao Y, Ma B, Liu Y, Qi H. Tear inflammatory cytokines analysis and clinical correlations in diabetes and nondiabetes with dry eye. Am J Ophthalmol. 2019;200:10–5.

    Article 
    PubMed 

    Google Scholar
     

  • Sorkhabi R, Ahoor Mh, Ghorbani Haghjo A, Tabei E, Taheri N. Assessment of tear inflammatory cytokines concentration in patients with diabetes with varying severity of involvement. Exp Eye Res. 2022;224: 109233.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Shi B, He S, Yao X, Willcox MD, Zhao Z. Changes to tear cytokines of type 2 diabetic patients with or without retinopathy. Mol Vis. 2010;16:2931–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azhan A, Zunaina E, Mahaneem M, Siti-Azrin AH. Comparison of VEGF level in tears post phacoemulsification between non-proliferative diabetic retinopathy and non-diabetic patients. J Diabetes Metab Disord. 2021;20(2):2073–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim AY, Moon JY, Jun RM, Kim HJ, Han KE. Ocular surface and tear cytokine changes after cataract surgery in patients with type 2 diabetes. Ocul Immunol Inflamm. 2023;31(8):1615–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou T, Dou Z, Cai Y, Zhu D, Fu Y. Tear fluid progranulin as a noninvasive biomarker for the monitoring of corneal innervation changes in patients with type 2 diabetes mellitus. Transl Vis Sci Technol. 2024;13(7): 9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hashemi H, Ahmadi H, Rostami Z, Alishahi A, Heidari Z. The role of endothelial growth factor and tear levels in diabetic retinopathy in type 2 diabetes. Int Ophthalmol. 2024;44(1):143.

    Article 
    PubMed 

    Google Scholar
     

  • Machalińska A, Kuligowska A, Ziontkowska-Wrzałek A, Stroynowska B, Pius-Sadowska E, Safranow K, et al. The severity of diabetic retinopathy corresponds with corneal nerve alterations and ocular discomfort of the patient. Int J Mol Sci. 2024;25(11):6072.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amil-Bangsa NH, Mohd-Ali B, Ishak B, Abdul-Aziz CNN, Ngah NF, Hashim H, et al. Total protein concentration and tumor necrosis factor α in tears of nonproliferative diabetic retinopathy. Optom Vis Sci. 2019;96(12):934–9.

    Article 
    PubMed 

    Google Scholar
     

  • Stolwijk TR, Kuizenga A, Van Haeringen NJ, Kijlstra A, Oosterhuis JA, Van Best JA. Analysis of tear fluid proteins in insulin-dependent diabetes mellitus. Acta Ophthalmol. 1994;72(3):357–62.

    Article 
    CAS 

    Google Scholar
     

  • Zou X, Zhang P, Xu Y, Lu L, Zou H. Quantitative proteomics and weighted correlation network analysis of tear samples in type 2 diabetes patients complicated with dry eye. Proteomics Clin Appl. 2020;14(4): e1900083.

    Article 
    PubMed 

    Google Scholar
     

  • Yu L, Chen X, Qin G, Xie H, Lv P. Tear film function in type 2 diabetic patients with retinopathy. Ophthalmologica. 2008;222(4):284–91.

    Article 
    PubMed 

    Google Scholar
     

  • Ang WJ, Zunaina E, Norfadzillah AJ, Raja-Norliza RO, Julieana M, Ab-Hamid SA, et al. Evaluation of vascular endothelial growth factor levels in tears and serum among diabetic patients. PLoS ONE. 2019;14(8): e0221481.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou F, Zhao H, Chen K, Cao S, Shi Z, Lan M. Flexible electrochemical sensor with Fe/Co bimetallic oxides for sensitive analysis of glucose in human tears. Anal Chim Acta. 2023;1243: 340781.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang JC, Ku HY, Chen TS, Chuang HS. Detection of low-abundance biomarker lipocalin 1 for diabetic retinopathy using optoelectrokinetic bead-based immunosensing. Biosens Bioelectron. 2017;89(Pt 2):701–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chuang HS, Chen YJ, Cheng HP. Enhanced diffusometric immunosensing with grafted gold nanoparticles for detection of diabetic retinopathy biomarker tumor necrosis factor-α. Biosens Bioelectron. 2018;101:75–83.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen LY, Hsu SM, Wang JC, Yang TH, Chuang HS. Photonic crystal enhanced immunofluorescence biosensor integrated with a lateral flow microchip: toward rapid tear-based diabetic retinopathy screening. Biomicrofluidics. 2023;17(4): 044102.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yao J, Liu Y, Jiang B, Yuan R, Xiang Y. An aptamer triple helix molecular switch for sensitive electrochemical assay of lipocalin 1 biomarker via dual signal amplifications. Analyst. 2023;148(12):2739–44.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guzman J, Hsu SM, Chuang HS. Colorimetric diagnostic capillary enabled by size sieving in a porous hydrogel. Biosensors (Basel). 2020;10(10):130.

  • Kim DW, Seo JH, Lim S-H. Evaluation of ocular surface disease in elderly patients with glaucoma: expression of matrix metalloproteinase-9 in tears. Eye. 2021;35(3):892–900.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J-Y, Kwon J-S, Hsu S-M, Chuang H-S. Sensitive tear screening of diabetic retinopathy with dual biomarkers enabled using a rapid electrokinetic patterning platform. Lab Chip. 2020;20(2):356–62.

    Article 
    PubMed 

    Google Scholar
     

  • Chen W-L, Jayan M, Kwon J-S, Chuang H-S. Facile open-well immunofluorescence enhancement with coplanar-electrodes-enabled optoelectrokinetics and magnetic particles. Biosens Bioelectron. 2021;193: 113527.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khan MS, Dighe K, Wang Z, Daza EA, Schwartz-Duval AS, Rowley CP, et al. Label-free detection of lactoferrin and beta-2-microglobuin in contrived tear film using a low-cost electrical biosensor chip. 2017 IEEE Healthcare Innovations and Point of Care Technologies (HI-POCT). 2017:72–5.

  • Phong PH, Chuang H-S, Thi Thuong D, Sang NN, Thi Ha Lien N, Nghia NT, et al. Graphene oxide-decorated hyrogel inverse opal photonic crystal improving colorimetric and fluorescent responses for rapid detection of lipocalin-1. Photonics and Nanostructures – Fundamentals and Applications. 2024;58: 101237.

    Article 

    Google Scholar
     

  • Gomez A, Myrkhiyeva Z, Tilegen M, Pham T, Bekmurzayeva A, Tosi D. Optical fiber ball resonator biosensor as a platform for detection of diabetic retinopathy biomarkers in tears. IEEE Sens J. 2024;24:11127–35.

    Article 
    CAS 

    Google Scholar
     

  • Youngblood H, Robinson R, Sharma A, Sharma S. Proteomic biomarkers of retinal inflammation in diabetic retinopathy. Int J Mol Sci. 2019;20(19):4755.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10): a016295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shrestha GS, Vijay AK, Stapleton F, Carnt NA. The effect of collection method on tear interleukin-6 levels in healthy individuals: a pilot study. Investigative Ophthalmology, Visual Science. 2019;60(9):5370-.


    Google Scholar
     

  • Ghasemi H, Ghazanfari T, Yaraee R, Faghihzadeh S, Hassan ZM. Roles of IL-8 in ocular inflammations: a review. Ocul Immunol Inflamm. 2011;19(6):401–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lopez-Castejon G, Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011;22(4):189–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solomon A, Dursun D, Liu Z, Xie Y, Macri A, Pflugfelder SC. Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Invest Ophthalmol Vis Sci. 2001;42(10):2283–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Hallegua DS, Weisman MH. Potential therapeutic uses of interleukin 1 receptor antagonists in human diseases. Ann Rheum Dis. 2002;61(11):960–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taghavi Y, Hassanshahi G, Kounis NG, Koniari I, Khorramdelazad H. Monocyte chemoattractant protein-1 (MCP-1/CCL2) in diabetic retinopathy: latest evidence and clinical considerations. J Cell Commun Signal. 2019;13(4):451–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanstock HG, Edwards JP, Walsh NP. Tear lactoferrin and lysozyme as clinically relevant biomarkers of mucosal immune competence. Front Immunol. 2019;10:1178.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semeraro F, Cancarini A, dell’Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res. 2015;2015:582060.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HJ, Kim PK, Yoo HS, Kim CW. Comparison of tear proteins between healthy and early diabetic retinopathy patients. Clin Biochem. 2012;45(1):60–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao S, Zhang S, Sun X, Zheng X, Wu J. Fluorescent aptasensor based on G-quadruplex-assisted structural transformation for the detection of biomarker lipocalin 1. Biosens Bioelectron. 2020;169: 112607.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Frontiers in Endocrinology. 2018;9:402.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target Oncol. 2020;15(3):261–78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ranganathan K, Sivasankar V. MicroRNAs – Biology and clinical applications. J Oral Maxillofac Pathol. 2014;18(2):229–34.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joglekar MV, Parekh VS, Hardikar AA. New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab. 2007;18(10):393–400.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong WKM, Sorensen AE, Joglekar MV, Hardikar AA, Dalgaard LT. Non-coding RNA in pancreas and beta-cell development. Noncoding RNA. 2018;4(4):41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinazo-Durán MD, Zanón-Moreno V, Lleó-Perez A, García-Medina JJ, Galbis-Estrada C, Roig-Revert MJ, et al. Genetic systems for a new approach to risk of progression of diabetic retinopathy. Arch Soc Esp Oftalmol. 2016;91(5):209–16.

    Article 
    PubMed 

    Google Scholar
     

  • Chan HW, Yang B, Wong W, Blakeley P, Seah I, Tan QSW, et al. A pilot study on MicroRNA profile in tear fluid to predict response to anti-VEGF treatments for diabetic macular edema. J Clin Med. 2020;9(9):2920.

  • Torimura A, Kanei S, Shimizu Y, Baba T, Uotani R, Sasaki S-i, et al. Profiling miRNAs in tear extracellular vesicles: a pilot study with implications for diagnosis of ocular diseases. Japanese Journal of Ophthalmology. 2024;68(1):70–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nattinen J, Aapola U, Jylha A, Vaajanen A, Uusitalo H. Comparison of capillary and Schirmer strip tear fluid sampling methods using SWATH-MS proteomics approach. Transl Vis Sci Technol. 2020;9(3): 16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You J, Willcox MD, Madigan MC, Wasinger V, Schiller B, Walsh BJ, et al. Tear fluid protein biomarkers. Adv Clin Chem. 2013;62:151–96.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You may also like

    Today’s Diabetes News, your ultimate destination for up-to-date and insightful information on diabetes, health tips, and living a fulfilling life with diabetes. Our mission is to empower and support individuals with diabetes, their loved ones, and the wider community by providing reliable, relevant, and engaging content that fosters a healthier and happier life.

    Most Viewed Articles

    Latest Articles

    Copyright MatchingDonors.com©️ 2025 All rights reserved.

    Are you sure want to unlock this post?
    Unlock left : 0
    Are you sure want to cancel subscription?
    -
    00:00
    00:00
      -
      00:00
      00:00