Bo, Z. & Wenying, Y. Outlook for the epidemiology and prevention of diabetes in China. Chin. J. Diab. 11(1), 7–10 (2019).
Chinese, M. A. D. B. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition) (Part1). Chin. J. Pract. Internal Med. 41(08), 668–695 (2021).
Fowler, M. J. Microvascular and macrovascular complications of diabetes. Clin. Diab. 26(2), 77–82 (2011).
Zhuo, X., Zhang, P. & Hoerger, T. J. Lifetime direct medical costs of treating type 2 diabetes and diabetic complications. Am. J. Prev. Med. 45(3), 253–261 (2013).
Goldhaber-Fiebert, J. D. et al. Inpatient treatment of diabetic patients in Asia: Evidence from India, China Thailand and Malaysia. Diabet. Med. 27(1), 101–108 (2010).
Hong, Y. Analysis of complications of type 2 diabetes in patients with treatment costs. Guide China Med. 13(14), 2 (2015).
Viigimaa, M. et al. Macrovascular complications of type 2 diabetes mellitus. Curr. Vasc. Pharmacol. 18(2), 110–116 (2020).
Beckman, J. A. & Creager, M. A. Vascular complications of diabetes. Circ. Res. 118(11), 1771–1785 (2016).
Yang, K. et al. Progress in the treatment of diabetic peripheral neuropathy. Biomed. Pharmacother. 148, 112717 (2022).
Selvarajah, D. et al. Diabetic peripheral neuropathy: Advances in diagnosis and strategies for screening and early intervention. Lancet Diabetes Endocrinol. 7(12), 938–948 (2019).
Xin, K. & Shuqiong, W. Analysis of risk factors related to peripheral vascular lesions in patients with type 2 diabetes mellitus and clinical application value of ankle-brachial index. J. Med. Inf. (Chinese). 35(05), 127–130 (2022).
Huysman, E. & Mathieu, C. Diabetes and peripheral vascular disease. Acta Chir Belg. 109(5), 587–594 (2009).
Lin, K. Y., Hsih, W. H., Lin, Y. B., Wen, C. Y. & Chang, T. J. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J. Diab. Investig. 12(8), 1322–1325 (2021).
Takao, T., Suka, M., Yanagisawa, H. & Kasuga, M. Combined effect of diabetic retinopathy and diabetic kidney disease on all-cause, cancer, vascular and non-cancer non-vascular mortality in patients with type 2 diabetes: A real-world longitudinal study. J. Diab. Investig. 11(5), 1170–1180 (2020).
Kobayashi, S. et al. Severity and multiplicity of microvascular complications are associated with QT interval prolongation in patients with type 2 diabetes. J. Diab. Investig. 9(4), 946–951 (2018).
Lihua, L. The dangers of diabetes and its complications (I). Med. Health Chin. 29(11), 64–66 (2015).
Cardoso, C., Leite, N. C., Moram, C. & Salles, G. F. Long-term visit-to-visit glycemic variability as predictor of micro- and macrovascular complications in patients with type 2 diabetes: The Rio de Janeiro Type 2 Diabetes Cohort Study. Cardiovasc. Diabetol. 17(1), 33 (2018).
Bahardoust, M. et al. Effect of metformin (vs placebo or sulfonylurea) on all-cause and cardiovascular mortality and incident cardiovascular events in patients with diabetes: an umbrella review of systematic reviews with meta-analysis. J. Diab. Metab. Disord. 1, 1–12 (2023).
Ali, M. K., Bullard, K. M., Saydah, S., Imperatore, G. & Gregg, E. W. Cardiovascular and renal burdens of prediabetes in the USA: Analysis of data from serial cross-sectional surveys, 1988–2014. Lancet Diabetes Endocrinol. 6(5), 392–403 (2018).
Huang, Y., Cai, X., Mai, W., Li, M. & Hu, Y. Association between prediabetes and risk of cardiovascular disease and all cause mortality: Systematic review and meta-analysis. BMJ. 355, i5953 (2016).
Ceriello, A. & Prattichizzo, F. Variability of risk factors and diabetes complications. Cardiovasc. Diabetol. 20(1), 101 (2021).
Hager, M. R., Narla, A. D. & Tannock, L. R. Dyslipidemia in patients with chronic kidney disease. Rev. Endocr. Metab. Disord. 18(1), 29–40 (2017).
Perez-Matos, M. C., Morales-Alvarez, M. C. & Mendivil, C. O. Lipids: A suitable therapeutic target in diabetic neuropathy?. J. Diabetes Res. 2017, 6943851 (2017).
Pilemann-Lyberg, S. et al. Uric acid is not associated with diabetic nephropathy and other complications in type 1 diabetes. Nephrol. Dial Transplant. 34(4), 659–666 (2019).
Bjornstad, P. et al. Serum uric acid predicts vascular complications in adults with type 1 diabetes: The coronary artery calcification in type 1 diabetes study. Acta Diabetol. 51(5), 783–791 (2014).
Ni, J., Ma, X. & Jian, Z. Research progress of abnormal glycemic variability and diabetic complications. Chin. J. Diabetes. 14(4), 388–392 (2022).
Gorst, C. et al. Long-term glycemic variability and risk of adverse outcomes: A systematic review and meta-analysis. Diabetes Care. 38(12), 2354–2369 (2015).
Cheng, D. et al. HbA1C variability and the risk of renal status progression in Diabetes Mellitus: A meta-analysis. Plos One. 9(12), e115509 (2014).
Li, S. et al. Visit-to-visit HbA(1c) variability is associated with cardiovascular disease and microvascular complications in patients with newly diagnosed type 2 diabetes. Diabetes Care. 43(2), 426–432 (2020).
Ceriello, A., Monnier, L. & Owens, D. Glycaemic variability in diabetes: Clinical and therapeutic implications. Lancet Diabetes Endocrinol. 7(3), 221–230 (2019).
Sharif, S. et al. HDL cholesterol as a residual risk factor for vascular events and all-cause mortality in patients with type 2 diabetes. Diabetes Care. 39(8), 1424–1430 (2016).
Hsu, W. H. et al. Greater low-density lipoprotein cholesterol variability increases the risk of cardiovascular events in patients with type 2 diabetes mellitus. Endocr. Pract. 25(9), 918–925 (2019).
Wang, M. C. et al. Effect of blood lipid variability on mortality in patients with type 2 diabetes: a large single-center cohort study. Cardiovasc. Diabetol. 20(1), 228 (2021).
Verma, S. et al. Association between uric acid levels and cardio-renal outcomes and death in patients with type 2 diabetes: A subanalysis of EMPA-REG OUTCOME. Diabetes Obes. Metab. 22(7), 1207–1214 (2020).
World HO. Definition, diagnosis and classification of diabetes mellitus and its complications : Report of a WHO consultation. Part 1, Diagnosis and classification of diabetes mellitus (1999).
Gan, Y. et al. A study of factors influencing long-term glycemic variability in patients with type 2 diabetes: A structural equation modeling approach. Front. Endocrinol. 14, 1216897 (2023).
Su, J. B. et al. HbA1c variability and diabetic peripheral neuropathy in type 2 diabetic patients. Cardiovasc. Diabetol. 17(1), 47 (2018).
Jeyam, A. et al. Diabetic neuropathy is a substantial burden in people with type 1 diabetes and is strongly associated with socioeconomic disadvantage: A population-representative study from Scotland. Diabetes Care. 43(4), 734–742 (2020).
Chiou, S. J., Chang, Y. J., Liao, K. & Chen, C. D. Modest association between health literacy and risk for peripheral vascular disease in patients with type 2 diabetes. Front. Public Health. 10, 946889 (2022).
Zhou, Q., Wang, X., Zhu, X., Yi, Z. & Lijie, Y. Effect of tai chi exercise on quality of life and serum inflammatory factors in patients with type 2 diabetic peripheral vasculopathy. Chin. J. Convalesc. Med. 30(10), 4 (2021).
Zhang, Q., Lou, S., Meng, Z. & Ren, X. Gender and age impacts on the correlations between hyperuricemia and metabolic syndrome in Chinese. Clin. Rheumatol. 30(6), 777–787 (2011).
Antón, F. M., García, P. J., Ramos, T., González, P. & Ordás, J. Sex differences in uric acid metabolism in adults: Evidence for a lack of influence of estradiol-17 beta (E2) on the renal handling of urate. Metabolism. 35(4), 343–348 (1986).
Hsieh, A. et al. Age of diabetes diagnosis and diabetes duration associate with glycated haemoglobin. Diab. Res. Clin. Pract. 104(1), e1-4 (2014).
Wei, F. et al. Serum uric acid levels were dynamically coupled with hemoglobin A1c in the development of type 2 diabetes. Sci. Rep. 6, 28549 (2016).
Li, J., Chen, W., Shu, W. & Jun, D. Long-term biological variability of serum lipids in Chinese. Chin. J. Lab. Med. 01, 24–26 (2003).
Quan, R. & Jiangqin, O. Analysis of the current status of blood lipid levels and factors affecting dyslipidemia in 3611 medical examiners. China’s Naturop. 30(18), 105–107 (2022).
Sun, H., Rimutu, B., Jienan, A., & Yiru, G. Influence factors of human blood lipid level variation. J. Inner Mongolia Minzu Univ. (Nat. Sci.). (04), 334–338 (2002).
Ushula, T. W. et al. Dietary patterns and the risk of abnormal blood lipids among young adults: A prospective cohort study. Nutr. Metab. Cardiovasc. Dis. 32(5), 1165–1174 (2022).
Thelle, D. S., Førde, O. H. & Arnesen, E. Distribution of high-density lipoprotein cholesterol according to age, sex, and ethnic origin: Cardiovascular disease study in Finnmark 1977. J. Epidemiol. Community Health. 36(4), 243–247 (1982).
Dule, S. et al. Reduced High-Density Lipoprotein Cholesterol Is an Independent Determinant of Altered Bone Quality in Women with Type 2 Diabetes. Int. J. Mol. Sci. 24(7), 1 (2023).
Kim, H. J. et al. Changes in high-density lipoprotein cholesterol with risk of Cardiovascular Disease among initially high-density lipoprotein-high participants. Cardiovasc. Diabetol. 22(1), 71 (2023).
Luo, X., Huang, Y. & Shuang Feng, Y. Effect of special disease outpatient management on prevalence and efficacy of statin treatment in type 2 diabetic patients: A multicenter community-based study. Chin. Gen. Pract. 22(11), 1277–1282 (2019).
Zhang, A., Quan, J. & Eggleston, K. Association between the quality of primary care, insurance coverage, and diabetes-related health outcomes in a cohort of older adults in China: results from the China Health and Retirement Longitudinal Study. BMJ Open. 12(9), e059756 (2022).
Hukportie, D. N. et al. Lipid variability and risk of microvascular complications in action to control cardiovascular risk in diabetes (ACCORD) trial: A post hoc analysis. J. Diabetes. 14(6), 365–376 (2022).
Baum, P., Toyka, K. V., Blüher, M., Kosacka, J. & Nowicki, M. Inflammatory mechanisms in the pathophysiology of diabetic peripheral neuropathy (DN)-new aspects. Int. J. Mol. Sci. 22(19), 1 (2021).
Xue, T. et al. Advances about immunoinflammatory pathogenesis and treatment in diabetic peripheral neuropathy. Front. Pharmacol. 12, 748193 (2021).
Lee, S. et al. Glycemic and lipid variability for predicting complications and mortality in diabetes mellitus using machine learning. BMC Endocr. Disord. 21(1), 94 (2021).
Waters, D. D. et al. Visit-to-visit variability of lipid measurements as predictors of cardiovascular events. J. Clin. Lipidol. 12(2), 356–366 (2018).
Hulse, M. & Gershberg, H. Variability in blood cholesterol, triglycerides, free fatty acids, glucose and body weight in maturity-onset diabetics. Am. J. Med. Sci. 258(2), 114–120 (1969).
Albrink, M. J., Lavietes, P. H. & Man, E. B. Vascular disease and serum lipids in diabetes mellitus. Observations over thirty years (1931–1961). Ann. Intern. Med. 58, 305–323 (1963).
Bangalore, S., Breazna, A., DeMicco, D. A., Wun, C. C. & Messerli, F. H. Visit-to-visit low-density lipoprotein cholesterol variability and risk of cardiovascular outcomes: Insights from the TNT trial. J. Am. Coll. Cardiol. 65(15), 1539–1548 (2015).
Lewing, B. et al. Effect of inadequate care on diabetes complications and healthcare resource utilization during management of type 2 diabetes in the United States. Postgrad. Med. 134(5), 494–506 (2022).
Ding, H. et al. The effects of chronic disease management in primary health care: Evidence from rural China. J. Health Econ. 80, 102539 (2021).
Maple-Brown, L. J., Brimblecombe, J., Chisholm, D. & O’Dea, K. Diabetes care and complications in a remote primary health care setting. Diabetes Res. Clin. Pract. 64(2), 77–83 (2004).
Brown, A. et al. The influence of health insurance stability on racial/ethnic differences in diabetes control and management. Ethn Dis. 31(1), 149–158 (2021).
Mao, H., Shen, J., Dong, S. & Jin, M. Influence of compensation scheme of medicare outpatients with special diseases on the patients overall satisfaction. Hosp. Admin. J. Chin. People’s Liber. Army. 22(11), 1028–1030 (2015).
Dong, T., Liu, S. & Jiping, L. Elderly diabetic and hypertension patients’ satisfaction with nursing care in community health service centers of Sichuan Province: A 2931-case study. J. Nurs. (China) 24(09), 7–10 (2017).