Home Type 1 Generative deep learning for the development of a type 1 diabetes simulator

Generative deep learning for the development of a type 1 diabetes simulator

by Ivan Contreras
0 comment
  • Kaizer, J. S., Heller, A. K. & Oberkampf, W. L. Scientific computer simulation review. Reliab. Eng. Syst. Saf. 138, 210–218 (2015).

    Article 

    Google Scholar
     

  • Kadota, R. et al. A mathematical model of type 1 diabetes involving leptin effects on glucose metabolism. J. Theor. Biol. 456, 213–223 (2018).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Farmer Jr, T., Edgar, T. & Peppas, N. Pharmacokinetic modeling of the glucoregulatory system. J. Drug Deliv. Sci. Technol. 18, 387 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nath, A., Biradar, S., Balan, A., Dey, R. & Padhi, R. Physiological models and control for type 1 diabetes mellitus: a brief review. IFAC-PapersOnLine 51, 289–294 (2018).

    Article 

    Google Scholar
     

  • Mansell, E. J., Docherty, P. D. & Chase, J. G. Shedding light on grey noise in diabetes modelling. Biomed. Signal Process. Control 31, 16–30 (2017).

    Article 

    Google Scholar
     

  • Mari, A., Tura, A., Grespan, E. & Bizzotto, R. Mathematical modeling for the physiological and clinical investigation of glucose homeostasis and diabetes. Front. Physiol. https://doi.org/10.3389/fphys.2020.575789 (2020).

  • Hovorka, R. et al. Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Meas. 25, 905 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Man, C. D. et al. The UVA/PADOVA type 1 diabetes simulator: new features. J. Diabetes Sci. Technol. 8, 26–34 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bergman, R. N. & Urquhart, J. The pilot gland approach to the study of insulin secretory dynamics. In Proceedings of the 1970 Laurentian Hormone Conference 583–605 (Elsevier, 1971).

  • Franco, R. et al. Output-feedback sliding-mode controller for blood glucose regulation in critically ill patients affected by type 1 diabetes. IEEE Trans. Control Syst. Technol. 29, 2704–2711 (2021).

    Article 

    Google Scholar
     

  • Nielsen, M. A visual proof that neural nets can compute any function. http://neuralnetworksanddeeplearning.com/chap4.html (2016).

  • Zhou, D.-X. Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal. 48, 787–794 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Nikzad, M., Movagharnejad, K., Talebnia, F. Comparative study between neural network model and mathematical models for prediction of glucose concentration during enzymatic hydrolysis. Int. J. Comput. Appl. 56, 1 (2012).

  • Nalisnick, E.T., Matsukawa, A., Teh, Y.W., Görür, D., Lakshminarayanan, B.: Do deep generative models know what they don’t know? In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, https://openreview.net/forum?id=H1xwNhCcYm (2019).

  • Noguer, J., Contreras, I., Mujahid, O., Beneyto, A. & Vehi, J. Generation of individualized synthetic data for augmentation of the type 1 diabetes data sets using deep learning models. Sensors. https://doi.org/10.3390/s22134944 (2022).

  • Thambawita, V. et al. Deepfake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine. Sci. Rep. 11, 1–8 (2021).

    Article 

    Google Scholar
     

  • Marouf, M. et al. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat. Commun. 11, 1–12 (2020).

    Article 

    Google Scholar
     

  • Festag, S., Denzler, J. & Spreckelsen, C. Generative adversarial networks for biomedical time series forecasting and imputation. J. Biomed. Inform. 129, 104058 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, J., Li, H. & Zhou, S. An overview of deep generative models. IETE Tech. Rev. 32, 131–139 (2015).

    Article 

    Google Scholar
     

  • Wan, C. & Jones, D. T. Protein function prediction is improved by creating synthetic feature samples with generative adversarial networks. Nat. Mach. Intell. 2, 540–550 (2020).

    Article 

    Google Scholar
     

  • Choudhury, S., Moret, M., Salvy, P., Weilandt, D., Hatzimanikatis, V., & Miskovic, L. Reconstructing kinetic models for dynamical studies of metabolism using generative adversarial networks. Nat. Mach. Intell. 4, 710–719 (2022).

  • Dieng, A.B., Kim, Y., Rush, A. M. & Blei, D. M. Avoiding latent variable collapse with generative skip models. In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research (eds Chaudhuri, K. & Sugiyama, M.) Vol. 89, 2397–2405 (PMLR, 2019).

  • Ruthotto, L. & Haber, E. An introduction to deep generative modeling. GAMM-Mitteilungen 44, 202100008 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Xie, T. et al. Progressive attention integration-based multi-scale efficient network for medical imaging analysis with application to COVID-19 diagnosis. Comput. Biol. Med. 159, 106947 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H., Zeng, N., Wu, P. & Clawson, K. Cov-net: A computer-aided diagnosis method for recognizing COVID-19 from chest x-ray images via machine vision. Expert Syst. Appl. 207, 118029 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, K., Liu, C., Zhu, T., Herrero, P. & Georgiou, P. Glunet: a deep learning framework for accurate glucose forecasting. IEEE J. Biomed. health Inform. 24, 414–423 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rabby, M. F. et al. Stacked LSTM based deep recurrent neural network with Kalman smoothing for blood glucose prediction. BMC Med. Inform. Decis. Mak. 21, 1–15 (2021).

    Article 

    Google Scholar
     

  • Munoz-Organero, M. Deep physiological model for blood glucose prediction in T1DM patients. Sensors 20, 3896 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noaro, G., Zhu, T., Cappon, G., Facchinetti, A. & Georgiou, P. A personalized and adaptive insulin bolus calculator based on double deep q-learning to improve type 1 diabetes management. IEEE J. Biomed. Health Inform. 27, pp. 2536–2544 (2023).

  • Emerson, H., Guy, M. & McConville, R. Offline reinforcement learning for safer blood glucose control in people with type 1 diabetes. J. Biomed. Inform. 142, 104376 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lemercier, J.-M., Richter, J., Welker, S. & Gerkmann, T. Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration. In ICASSP 2023 – 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 1–5 (2023).

  • Richter, J., Welker, S., Lemercier, J.-M., Lay, B. & Gerkmann, T. Speech enhancement and dereverberation with diffusion-based generative models. In IEEE/ACM Transactions on Audio, Speech, and Language Processing 1–13 (2023).

  • Yoo, T. K. et al. Deep learning can generate traditional retinal fundus photographs using ultra-widefield images via generative adversarial networks. Comput. Methods Prog. Biomed. 197, 105761 (2020).

    Article 

    Google Scholar
     

  • You, A., Kim, J. K., Ryu, I. H. & Yoo, T. K. Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey. Eye Vis. 9, 1–19 (2022).

    Article 

    Google Scholar
     

  • Liu, M. et al. Aa-wgan: attention augmented Wasserstein generative adversarial network with application to fundus retinal vessel segmentation. Comput. Biol. Med. 158, 106874 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, S. et al. Diabetic retinopathy diagnosis using multichannel generative adversarial network with semisupervision. IEEE Trans. Autom. Sci. Eng. 18, 574–585 (2021).

    Article 

    Google Scholar
     

  • Zhou, Y., Wang, B., He, X., Cui, S. & Shao, L. DR-GAN: conditional generative adversarial network for fine-grained lesion synthesis on diabetic retinopathy images. IEEE J. Biomed. Health Inform. 26, 56–66 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Prediction of OCT images of short-term response to anti-VEGF treatment for diabetic macular edema using different generative adversarial networks. Photodiagnosis Photodyn. Ther. 41, 103272 (2023).

  • Sun, L.-C. et al. Generative adversarial network-based deep learning approach in classification of retinal conditions with optical coherence tomography images. Graefe’s Arch. Clin. Exp. Ophthalmol. 261, 1399–1412 (2023).

    Article 

    Google Scholar
     

  • Zhang, J., Zhu, E., Guo, X., Chen, H. & Yin, J. Chronic wounds image generator based on deep convolutional generative adversarial networks. In Theoretical Computer Science: 36th National Conference, NCTCS 2018, Shanghai, China, October 13–14, 2018, Proceedings 36, 150–158 (Springer, 2018).

  • Cichosz, S. L. & Xylander, A. A. P. A conditional generative adversarial network for synthesis of continuous glucose monitoring signals. J. Diabetes Sci. Technol. 16, 1220–1223 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Mujahid, O. et al. Conditional synthesis of blood glucose profiles for T1D patients using deep generative models. Mathematics. https://doi.org/10.3390/math10203741 (2022).

  • Eunice, H. W. & Hargreaves, C. A. Simulation of synthetic diabetes tabular data using generative adversarial networks. Clin. Med. J. 7, 49–59 (2021).

  • Che, Z., Cheng, Y., Zhai, S., Sun, Z. & Liu, Y. Boosting deep learning risk prediction with generative adversarial networks for electronic health records. In 2017 IEEE International Conference on Data Mining (ICDM) 787–792 (2017).

  • Noguer, J., Contreras, I., Mujahid, O., Beneyto, A. & Vehi, J. Generation of individualized synthetic data for augmentation of the type 1 diabetes data sets using deep learning models. Sensors 22, 4944 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, G., Thombre, P., Lee, M. L. & Hsu, W. Generative data augmentation for diabetic retinopathy classification. In 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI) 1096–1103 (2020).

  • Zhu, T., Yao, X., Li, K., Herrero, P. & Georgiou, P. Blood glucose prediction for type 1 diabetes using generative adversarial networks. In CEUR Workshop Proceedings, Vol. 2675, 90–94 (2020).

  • Zeng, A., Chen, M., Zhang, L., & Xu, Q. Are transformers effective for time series forecasting? In Proceedings of the AAAI conference on artificial intelligence.37, pp. 11121–11128 (2023).

  • Zhu, T., Li, K., Herrero, P. & Georgiou, P. Glugan: generating personalized glucose time series using generative adversarial networks. IEEE J. Biomed. Health Inf. https://doi.org/10.1109/JBHI.2023.3271615 (2023).

  • Lanusse, F. et al. Deep generative models for galaxy image simulations. Mon. Not. R. Astron. Soc. 504, 5543–5555 (2021).

    Article 

    Google Scholar
     

  • Ghosh, A. & ATLAS collaboration. Deep generative models for fast shower simulation in ATLAS. In Journal of Physics: Conference Series. IOP Publishing. 1525, p. 012077 (2020).

  • Borsoi, R. A., Imbiriba, T. & Bermudez, J. C. M. Deep generative endmember modeling: an application to unsupervised spectral unmixing. IEEE Trans. Comput. Imaging 6, 374–384 (2019).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ma, H., Bhowmik, D., Lee, H., Turilli, M., Young, M., Jha, S., & Ramanathan, A.. Deep generative model driven protein folding simulations. In I. Foster, G. R. Joubert, L. Kucera, W. E. Nagel, & F. Peters (Eds.), Parallel Computing: Technology Trends (pp. 45–55). (Advances in Parallel Computing; Vol. 36). IOS Press BV. https://doi.org/10.3233/APC200023 (2020)

  • Wen, J., Ma, H. & Luo, X. Deep generative smoke simulator: connecting simulated and real data. Vis. Comput. 36, 1385–1399 (2020).

    Article 

    Google Scholar
     

  • Mincu, D. & Roy, S. Developing robust benchmarks for driving forward AI innovation in healthcare. Nat. Mach. Intell. 4, 916–921 (2022).

  • Mirza, M. & Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).

  • Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 1125–1134 (2017).

  • Ahmad, S. et al. Generation of virtual patient populations that represent real type 1 diabetes cohorts. Mathematics 9, 1200 (2021).

  • Bertachi, A. et al. Prediction of nocturnal hypoglycemia in adults with type 1 diabetes under multiple daily injections using continuous glucose monitoring and physical activity monitor. Sensors https://doi.org/10.3390/s20061705 (2020).

  • Marling, C. & Bunescu, R. The OhioT1DM dataset for blood glucose level prediction: update 2020. In CEUR Workshop Proceedings, Vol. 2675, 71 (NIH Public Access, 2020).

  • Estremera, E., Cabrera, A., Beneyto, A. & Vehi, J. A simulator with realistic and challenging scenarios for virtual T1D patients undergoing CSII and MDI therapy. J. Biomed. Inform. 132, 104141 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Marin, I., Gotovac, S., Russo, M. & Božić-Štulić, D. The effect of latent space dimension on the quality of synthesized human face images. J. Commun. Softw. Syst. 17, 124–133 (2021).

    Article 

    Google Scholar
     

  • The Editorial Board. Into the latent space. Nat. Mach. Intell. 2, 151 (2020).

  • Battelino, T. et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. https://doi.org/10.1016/S2213-8587(22)00319-9 (2022).

  • Beneyto, A., Bertachi, A., Bondia, J. & Vehi, J. A new blood glucose control scheme for unannounced exercise in type 1 diabetic subjects. IEEE Trans. Control Syst. Technol. 28, 593–600 (2020).

    Article 

    Google Scholar
     

  • Herrero, P., Alalitei, A., Reddy, M., Georgiou, P. & Oliver, N. Robust determination of the optimal continuous glucose monitoring length of intervention to evaluate long-term glycemic control. Diabetes Technol. Ther. 23, 314–319 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cryer, P. E. Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes 63, 2188–2195 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Ma, H., Aihara, K. & Chen, L. Detecting causality from nonlinear dynamics with short-term time series. Sci. Rep. 4, 1–10 (2014).

    Article 

    Google Scholar
     

  • Verma, A. K. et al. Skeletal muscle pump drives control of cardiovascular and postural systems. Sci. Rep. 7, 1–8 (2017).

    Article 

    Google Scholar
     

  • Nemat, H., Khadem, H., Elliott, J. & Benaissa, M. Causality analysis in type 1 diabetes mellitus with application to blood glucose level prediction. Comput. Biol. Med. 153, 106535 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breton, M. D. & Kovatchev, B. P. One year real-world use of the control-IQ advanced hybrid closed-loop technology. Diabetes Technol. Ther. 23, 601–608 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mujahid, O. Ai-based type 1 diabetes simulator. Github https://doi.org/10.5281/zenodo.10722210 (2024).

  • You may also like

    Leave a Comment

    1

    Today’s Diabetes News, your ultimate destination for up-to-date and insightful information on diabetes, health tips, and living a fulfilling life with diabetes. Our mission is to empower and support individuals with diabetes, their loved ones, and the wider community by providing reliable, relevant, and engaging content that fosters a healthier and happier life.

    Interesting Topics

    Most Viewed Articles

    Latest Articles

    Copyright MatchingDonors.com©️ 2024 All rights reserved.

    Are you sure want to unlock this post?
    Unlock left : 0
    Are you sure want to cancel subscription?